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Abstract

Strain gradient theory for continuum analysis has kinematic relations, which include terms from second gradients
of the deformation map. This results in balance equations that have fourth order spatial derivatives, supple-
mented with higher order boundary conditions. The weak formulation of fourth order operators stipulate that
the basis functions must be globally C! continuous; very few finite elements in two dimensions meet this require-
ment. In this paper, we propose a meshfree methodology for the analysis of gradient continua using a conformal
a-shape based natural element method (NEM). The conformal a-NEM allows the construction of models entirely
in terms of nodes, and ensures quadratic precision of the interpolant over convex and non-convex boundaries.
Smooth natural neighbor interpolants are achieved by a transformation of Farin’s C'! interpolant, which are
obtained by embedding Sibson’s natural neighbor coordinates in the Bernstein-Bézier surface representation of
a cubic simplex. Numerical examples are presented to demonstrate the accuracy and efficiency of the proposed
method.

1. Introduction

It is well-known that inhomogeneities present in any material at the microscopic scale influence its properties
at the macroscopic scale: materials such as suspensions, blood flows, liquid crystals, porous media, polymeric
substances, solids with microcracks, dislocations, turbulent fluids with vortices, and composites point to the
need for incorporating micro motions in continuum mechanical formulations. There has been considerable focus
towards the development of gradient continuum theories that account for the inherent microstructure in such
natural and engineering materials. The notion of generalized continua unifies several extended continuum the-
ories that account for such a size dependence due to the underlying microstructure of the material. These can
be categorized as gradient continuum theories (see Mindlin and Tiersten (1962), Mindlin (1965), Mindlin and
Tiersten (1964)), micro continuum theories (see Eringen (1964), Eringen (1970) and Hirschberger and Steinmann
(2007)), and nonlocal continuum theories. In gradient continuum theory, on associating tensors of various order
with material points, higher order theories can be constructed (see Eringen (1998), Eringen (1992)).

In this paper, the focus is on developing a computational methodology for solving a gradient continuum formula-
tion. In particular, we consider the strain gradient theory, or the gradient continuum as for example the second
gradient of strain model as given by Toupin (1962) and Mindlin (Mindlin and Tiersten (1962), Mindlin (1965),
Mindlin and Tiersten (1964)). Strain gradient theory requires no additional degrees of freedom but imposes
C'! continuity requirements. A comparison of various higher order gradient theories can be found in Fleck and
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Hutchinson (1996). The present work draws from the contribution of Kirchner and Steinmann (2007), where the
variational concepts on gradient and micromorphic continuum have been presented. A more detailed formulation
of a gradient approach in spatial and material setting appears in Kirchner and Steinmann (2005) and in Sunyk
and Steinmann (2003). The balance equations for a gradient continuum have fourth order spatial derivatives
analogous to the biharmonic equation of Kirchhoff plates together with higher order boundary conditions. The
solution of these equations require that the primary variable be C' continuous; only a few two dimensional
finite elements that have been developed for plate bending problems meet this requirement. The most common
way for gradient continuum analysis has been through the use of mixed formulations using finite elements (Shu
et al. (1999), Amanatdou and Aravas (2002)), that only requires C° continuity (see Kouznetsova (2002) and
Kouznetsova et al. (2004)). All these methods lead to extra degrees of freedom in addition to the primary
unknowns. The formulation of C! finite elements has significant complexity (Stogner and Carey (2007)). An
alternative choice with higher order approximants is the use of a meshfree method like the element-free Galerkin
(Belytschko et al. (1994), Askes and Aifantis (2002)) or the meshless local Petrov Galerkin (see Tang et al.
(2003)). Most of these methods are for small strains and they pose difficulties in the imposition of boundary
conditions because of the non-interpolating property of the approximant.

The natural element method (NEM), which is based on Sibson’s C? interpolant (Sibson, 1980, 1981) was proposed
by Braun and Sambridge (1995). It was used for data approximation in geophysical applications (Sambridge
et al., 1995), and also successfully explored for solid mechanics problems by Sukumar et al. (1998). Farin pro-
posed a C'' natural neighbor interpolant (Farin, 1990), which was used by Sukumar and Moran (1999) to solve
fourth-order elliptic boundary-value problems. Farin’s C'! interpolant is obtained by embedding Sibson’s natural
neighbor coordinates in the Bernstein-Bézier surface representation of a cubic simplex (see Farin (1986)), and
the transformation adopted by Sukumar and Moran (1999) led to interpolation of nodal function and nodal
gradient values. The interpolation property makes the C' NEM a suitable candidate for use in the Galerkin
implementation of gradient continua. The a-shape based extension of NEM by Cueto et al. (2002) enabled
the construction of models entirely in terms of nodes and the imposition of essential boundary conditions on
non-convex parts of the boundary (Cueto et al. (2000)). The use of a conformal a- shapes (Cazals et al. (2006)),
helps in recovering the whole domain from a discrete set of nodes.

In this paper, a methodolgy for solving a gradient continuum formulation is presented. The kinematics are pre-
sented for finite deformations, which include the first and second order gradient terms. For conservative static
problems, the Dirichlet principle results in the Euler-Lagrange equations, i.e., the balance of momentum in its
strong form. Thus, upon the definition of proper gradient elasticity kinematics, in terms of incorporation of the
higher order deformation gradient contribution, a variation of the potential energy renders the weak form of the
balance of the momentum together with Neumann boundary conditions and higher order boundary conditions
in terms of double force terms. A solution to these equations is presented through the C' conformal a-natural
element method.

The remainder of this paper is organized as follows. In the next section, we present the kinematics of gradient
continua for a geometrically nonlinear setting and the constitutive formulation that includes the length scale
effects in the energy expression. Natural neighbor interpolation is introduced in Section 3 and the trial and
test approximations used in the C' NEM for gradient elasticity are presented in Section 4. The extension to a
conformal a-shape based natural element method follows thereafter in Section 5. In Section 6, several numerical
examples are presented to demonstrate the accuracy of the method, and we close with a few concluding remarks
in Section 7.

2. Gradient Continua

2.1. Kinematic relations

To investigate the variational principle in a geometrically nonlinear setting we refer all quantities arising in
the continuum mechanical description to the material configuration By € R3 with boundary 9By and outward
unit normal vector IN. In defining the motion of By a typical continuum particle occupies a succession of points
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which for a fixed material point X, forms the spatial path for this continuum particle. The position vectors of
particles in By are given by X, and the nonlinear deformation map

@ :By— Bt (1a)
X—oX)== (1b)
N n
®
F
G

Figure 1: Gradient continuum deformation map

is such that it maps particles X of the material configuration to particles @ in the spatial configuration B;. As
usual ¢ is assumed to be sufficiently smooth (C! continuous) so that we define the deformation gradient!
0pi
F:=Vxp, Fip:= ax;’ (2)
where we use small and capital indices to denote the spatial and the material configurations, respectively. The
gradient of the deformation map is given by

2
A, 3)
0XA0Xp

It is observed that F' and G are so-called second and third order two point tensors respectively. Naturally,
F does not exhibit any symmetries, but G is symmetric in the last two indices, i.e., for ¢ € C*F k > 1,
Giap = Gipa, which follows due to the interchangeability of second-order partial derivatives. The Jacobian
determinant is denoted by J := detF = dv/dV > 0, with dV and dv being the infinitesimal volume elements in
the material and spatial configurations, respectively.

G:=VxF =VxVxp, Giap=Fap=

2.2. Energy considerations and Balance relations

With the above definitions, we turn now to the statement of the underlying Dirichlet problem for gradient
continua in the large strain regime using a variational formulation. It is desired to deduce the Euler-Lagrange
equations governing gradient continua from the Dirichlet principle given in the form (« is a small, real, scalar-
valued parameter)

ST ({o}) = = (11 ({o} + a3{o})) famo 0. (@)

We consider a gradient continuum for which the potential energy II is a functional of the deformation, ¢, whereas
the stored energy density Wy depends on F' and G, so that the functional is written as

Hg) = [ Wa(P.G)aV + 1™ (¢). (5)
Bo

IThe gradient of any physical quantity, say {o} with respect to an argument {e} for a fixed material placement is denoted by
_ 9{o}
Viey{o} = (e} "
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If we assume the material to be hyperelastic, stresses can be defined as the derivatives of Wy with respect to
their energetically conjugate deformation variables. The macro-stress P, and the double stress Q of Piola type
together with the volume force density by are obtained by the derivatives?

P :=DpWy, Q:=DgWy, by:=D, Wy (6)

For arbitrary variations of d¢, the energy minimization takes the form3

oI = / [P :0F + QE&G} dV + 611"t = 0, (7)
Bo
where
[rest ::—/bo-cpdV— / @ tDdA - / VM- tQdA. (8)
Bo OBy 9Bo

In the above equation, by is the body force density acting on the material domain By. tg’ and tOQ are the
nominal surface traction and second-order stress traction, respectively, which act on the surface in the material
configuration 98 (see Mindlin (1965)). By application of Gauss’s theorem, we derive the higher order equilibrium
equations and Neumann type boundary conditions*

Div(P —DivQ) = —by in By 9)
[P-DivQ]- N+ L(Q-N) =t} on dB, (10)
Q:[N@N]=t¢ ondB, (11)

where L(Q - N) denotes the following differential operator
~L(Q N)=KQ:[NeN|+V Q- -N): I (12)

with the total curvature K = —Vg(T)N : I of the surface 9By. Herein Vgév) and Vg(T) denote the normal and
tangential components of the gradient. A detailed derivation of these equations is presented in the Appendix.

2.3. Piola transform of the balance of momentum

To establish the balance of linear momentum in material parameterization and spatial reference a one-sided
push forward — a Piola transformation — is applied to the balance of momentum, Eq. (9), in order to rewrite
them in terms of purely spatial stress tensors. For this purpose the Piola transformation formulae

{o} —j{e} - FT (13)

is used with j = 1/.J = dV/dw, as the inverse Jacobian determinant. Eq. (13) relates Div({e}) = Jdiv(j{e}-FT),
the divergence operator Div({e}) with respect to material placement to the divergence operator with respect to

2The derivatives of values with respect to tensors of any order are denoted by 8{,}{0} = gff% Additionally for the sake of
clarity, D{.}{o} = % < denotes the derivative with respect to a variable at fixed material placement X.

3Here : denotes a double contraction of rank-two tensors P and F, i.e., P;;F;; and : denotes a triple contraction of rank-three
tensors Q and G, i.e., Q;yxGijK.
4The divergence operators identify as: Div ({8}) := Vx{e} : I, with respect to material coordinates X.
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the spatial placement div({e}). With this transformation, we obtain the (gradient enhanced) Cauchy stress and
convected hyperstress® as

o= {P'FT—FQQEP’ G} and T = jQ : [FT®FT} (14)

On using the divergence relation Div (P — DivQ) = Jdiv(j [P — DivQ] - F') and also j [DivQ] - F* =
div(jQ : [FT®FT}) —-7Q >’ @ and jbg = by, the balance of linear momentum with material parameterization

and spatial reference is given by ©

div(e — divT) = —by. (15)

2.4. Constitutive assumption for stored energy density

A hyperelastic constitutive theory is chosen. The constitutive relation is appropriately chosen including a
length scale parameter [. Using this constitutive assumption, various stress measures are derived for the spatial
motion problem. For the internally stored energy density Wy, we assume the following hyperelastic constitutive
function

1 1 : 1 .
Wo (F,G) = 5an’ T+ Sn [F:F—n%™—2InJ] + 5u12G:G, (16)

which consists of a Neo-Hookean term and an additional length scale term which takes into account the second-
order gradients. Herein, the material parameters A and p are the Lamé constants from classical elasticity.
Additionally, the so called internal length [, accounts for the scale dependence and may be interpreted as a
characteristic size at the corresponding length. Furthermore, n%™ denotes the number of space dimensions.
With this constitutive assumption the Piola type stresses take the form

P=DprWy=[AnJ—pu F~ '+ uF, (17a)
Q = DcW, = ul*G. (17b)
Moreover, the Cauchy type stresses are eventually evaluated as

o= [[Aln.] W F T4 MF} FT 4 juc ™’ a, (18a)
T = jul®G - [F%FT} (18b)

3. C! natural neighbor interpolation

It is evident from Eq. (9) to Eq. (12) that the balance of momentum equation is of fourth order and requires
an approximation which is C' continuous. To achieve this in the present work we pursue an implementation of
gradient continua using the conformal a-natural element method (hereafter, as in Cueto et al. (2000), we refer
to it as a-NEM). The o-NEM allows the construction of models entirely in terms of nodes, reproduces the whole
domain and also ensures quadratic precision of the interpolant over convex and non-convex boundaries. A brief
description of CY and C' natural neighbor interpolation schemes follows.

5Q 2?3 G denotes a double contraction of two rank three tensors with respect to the second and third index i.e., QurxGpiK
6The regular and modified dyadic products of two second order tensors are defined through the relations
[A®B]:C=[B:C|A, A:[BC]|=[A:B|C
[A@B] :C=A-Cc BT, A: [B@C} =B".A.C
[A®B]:Cc=A.CT.B", A:[BgC]=B".-AT.C
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(a) . (b)

Figure 2: (a) First order Voronoi diagram and Delaunay triangulation of a set of five points; and (b) Second-order Voronoi and
Sibson interpolant of p’ with respect to node 2.

Consider a set of nodes N = {ni,na,...,nay} € R2. Natural neighbor coordinates are constructed on the
basis of the underlying Voronoi tessellation for the nodal set V. The first order Voronoi diagram of the set N is
a subdivision of the plane into cells V; (Voronoi polygons) such that any point in V; is closer to node n; than to
any other node ny € N:

Vi={XeR dX,X;)<dX,X,)VJ#I} (19)

where d(-,-), the Euclidean metric, is the distance between X and X ;. The first-order Voronoi diagram, its
dual the Delaunay triangulation, and the empty circumcircles for the set N are shown in Figure 2a. Now a
point p’ is introduced into the Voronoi diagram of set N. If p’ is tessellated along with the nodal set N, then,
in the newly constructed triangulation based on N and p’, the natural neighbors of p’ are those nodes that are
connected by a Delaunay edge to p’. The C° natural neighbor interpolant of p’ with respect to the natural
neighbor node 2 is defined as the ratio of the area of overlap of the Voronoi cell, V5,/, to the total area of the
Voronoi cell of p/, that is

n _ area(defg)  Aa(p)
b2(p) = area (abede) A2(p’) ’ (20)

Thus, for any natural neighbor node I, the ratio of the area of overlap of the Voronoi cells to the total area of
the Voronoi cell of p’ is

_ A(p)
Alp)’

¢1(p') (21)

where
AW') =" Al). (22)

To achieve C! natural neighbor interpolation, we adopt the procedure proposed by Sukumar and Moran (1999).
The methodology is based on embedding the C° natural neighbor interpolant in the Bernstein-Bézier representa-
tion of a cubic simplex, termed as Farin’s interpolant (see Farin (1990)) and performing a simple transformation
to relate the Bézier ordinates to the nodal degrees of freedom. Let the point p’ € © C R? have n natural
neighbors, with ¢;(p’) as the natural neighbor interpolant of node I (I =1,n). Let this set be defined by
O = ($1(p'), p2('), d3(p') e -pn(p')). These C° natural neighbor interpolants are identical to the barycentric
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coordinates of a simplex § € R"~!. Following a multi-index notation”, a Bernstein-Bézier cubic surface (m = 3)
over the simplex § can be written in the form

uf (@) = 3 BY (@), (23)

li|=3

which is the Cl interpolant used as a trial function in the natural element method. In the above equation,
B3} (®) = (f’) L OF e in where |i| = i1 + 42+ i3+ ... + i, = 3. The Bézier ordinate b; is associated with
the control point q; € 2, where q; are the projection of control points of m-variate Bézier polynomials over the
n — 1 dimensional simplex on to the plane

a=Y B (/3) X5 lil=3 (24)
il=1

For more details on Bernstein-Bézier representation the reader can refer to Farin (1985). Following the procedure
outlined in Sukumar and Moran (1999), now the C' interpolant, which is a function of Bézier ordinates, as
given in Eq. (23), is transformed to a function of nodal function values and nodal gradient values by a simple
transformation of the form

w" (@) = {B(®)}" (b} = {B(@)}" [T {w} = {¥ (@)} {w}. (25)

On constructing the transformation matrix [T'] (see Sukumar and Moran (1999) for more details), we can express
the C1(2) NEM trial function in standard shape function notation as

3n
w' (p) = s () d, (26)
J=1

where 37 _2(p'), ¥3r—1(p’), and 37 (p") are the shape functions of node I that are associated with the d; given by
dy ={dsr—2,dsr—1,dsr} = {wr,wr x,wry}, which is a function of nodal function values w; and nodal gradient
values wr x and wry. The C' shape functions are shown in Figure 3.

Most of the properties of the C°(2) natural neighbor shape functions and Bernstein-Bézier shape functions
are retained by C'(Q) shape functions. C*(£2) NEM shape functions posses properties such as partition of unity,
quadratic completeness, positivity and interpolation. The C'* NEM interpolant interpolates to nodal function
values and nodal gradient values, and this property makes it a suitable candidate for use in a gradient continuum
formulation.

P3r—2(X y) =01 P3r—1(Xy) =0 P31(X ) =0
Par—2.x(Xy)=0 Yar—1,x(X ) =0rs Y31 x(Xy)=0
P32y (X)) =0 Y31,y (X5) =0 sy (X ) =61 (27)

4. C! natural element method for gradient continua

Equation (Eq. (9) - Eq. (12)) is a fourth order equation analogous to the biharmonic equation of Kirchoff
plates. The solution to this equation thus requires C'' continuous approximations. To this end, we use the C*
natural neighbour approximation, both for the deformation map and for the space of admissible variations.

Now, for a gradient continuum, we write the C'' natural neighbour approximation as a sum of deformation
and gradients of deformation degrees of freedom given by

@ (X) = D@ NUX) + 3 F - MO(X), (28)

a=1

"Multi-indices are n-tuples of nonnegative integers, the components of which start at zero; with the norm defined as |i| = m =
i1+ 12+ .. F+in.
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(d) (e)

Figure 3: (a) Grid (b) C! Shape function 137 _5 at node I (c) Derivative ar—2,x of C? shape function at node I (d) C! shape
functions v¢sy_1 and (e) 31.

= En:égabNb(X)—i—znjéFb -M*(X), (29)
= b=1

where N%(X) and M“(X) are the shape functions for the node a that are associated with nodal deformations
©® and nodal deformation gradients F'®, respectively. Herein, the nodal indices a and b account for the discrete
values of the unknown ¢ and its gradients. These shape functions have the interpolating property. The first and
second order deformation gradients are given by

"= e @ VxNT+ F Vx M, (30a)
a=1

=Y " ®@VxVxN*+F* VxVxM". (30b)
a=1

In order to obtain the discretized spatial equilibrium equations, recall the spatial virtual work Eq. (7). Introducing
the interpolation for d¢ we have

n
D ¢ @ VxN®+6F - VxM"
a=1

v (31)

STI(p"; 5", 5F) = / P(e")

/Q

Z&p 2 VAV N+ 5F® -V Vyx M?| dV + 611 (1),
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The above equation can be rearranged for all dp® and 0F* as

STI(p"; 6%, 6F) = 25¢ / ") VXN + Q(¢") : VxVx N dV (32)
Bo

+Z<5F“' / [P(e") T VM + Q") ¥ VxVx M| v + 311 () = 0.
Bo

The discrete residuals® of the spatial motion problem can thus be written as

R“’—/P M. VxNYX dV+/Q M) VxVxN®(X)dV — F¢™ =o. (33a)

/P 2V M(X)dV + / Q") %’ Vx VM (X)dV — FF" = 0. (33b)

This represents a set of nonlinear equilibrium equations with the current nodal deformation and its gradient
as unknowns. The solution of these equations is achieved using a Newton Raphson iterative procedure. The
linearized coupled problem

wa K‘PF ALPb B Ffewt _ F;Pint
ngp K AFb - F(I;ewt _ Fgw,nf,

is solved for increments of ¢° and F’. The component matrices of the global tangent stiffness matrix are given
by

OR?
K? =—%= [ [[DpP-VxN° -VxN’+[DcQ : VxVxN"|: VxVxN’] dV (34a)
ey
Bo
or _ ORY a2 b a1 23 b
K =G5 = [[DFP~VXN 1P VxM" +[DeQ : VxVx N % VXVXM}dV (34D)
Bo
F -
KT¥ - %Ra _ / [(DPP - VM| 2 VN + [D6Q : VxVx M| ' VxVxN?| av (34¢)
Pb 2
FF 8R5 ay 2 b ay 23 b
Kjf = S = [[DFP-VXM 12 VxM" +[DeQ : VxVx M VXVXM}CZV (34d)
b
Bo

where the specific tangent operators for the constitutive law read as
DpP = FT@F " —ANnJ -y FToF T [y Il (35a)
DeQ = p’Ie [I21], (35b)

where Dp P and DgQ are tensors of fourth and sixth order respectively. K f;f K PF and its symmetric counter-
part K fb"o and K anF are tensors of second, third, and fourth order respectively and are arranged in appropriate
global locations to yield the global stiffness matrix. The symmetric bilinear form of basis functions together
with continous function of nodal function values and nodal gradient values in the neighbourhood of any given
evaluation point result in symmetric hessian matrix. A background cell grid with standard Gauss quadrature

rule is used for numerical evaluation of these integrals.

2 . . . .
8 A~ B denotes a contraction of rank two tensors with respect to the second index i.e., Ay By
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5. On the a-shape extension to NEM

So called a-shapes define a family of simplicial complexes parameterized by « € R. This concept was intro-
duced by Edelsbrunner et al. (1983), for the study of points in the plane and higher dimensions by Edelsbrunner
and Mucke (1994). Recently, density scaled a-shapes have been used in natural neighbor interpolation for
imposing essential boundary conditions on non-convex domains (Cueto et al., 2000). For non-uniform nodal
discretization, there is a need for « shape filtration on a local scale, unlike a global scale for reconstructing the
whole domain. This requires a judicious choice of « values. Conformal alpha shapes (originally proposed by
Cazals et al. (2006)) are a potential solution for such discretizations. Let us consider a nodal point set S C R<.
For a given value of a € [0,00), a — balls are circles of radius « around the nodal points in S. The step by step
procedure for construction of conformal a-shapes is briefly outlined here.

e For the given point set S, the Delaunay triangulation DT'(S) is first constructed. Figure 4a shows the
Delaunay triangulation for a set consisting of 10 nodes.

"
[

"3

.4 ad

a8

Figure 4: (a) Delaunay triangulation DT'(S) (b) a-complex Cy of S

e The boundary of the a-shape 05, is part of the Delaunay triangulation DT'(S). Figure 5 shows the
boundary 95, as a collection of k-simplices” which are a-exposed!®. To achieve this a list of all k-simplices,
K S is computed in this step.

e Figure 6 shows boundary of a-shape as a collection of simplices. It is seen that for a range of alpha values
there is a topological change in the boundary. Such simplices are termed as critical a-shapes. In this step,
a list By of limits [ay, 00] of intervals such that a k-simplex belongs to the boundary 0S5, of the critical
a-shape is obtained.

e For the point set S, using KS, the a-complex!'!, denoted as C,, is now constructed. For any assumed value
of the radius of the great circle of a k-simplex oxg and corresponding center pyg, it is determined if a
particular simplex belongs to C,, by inspecting all simplices in DT'(S). To do this we check if oxs < «
and the oxg ball centered at pgg is empty'2.

9k-simplex is a k-dimensional analouge of triangle. Specifically, a simplex is the convex hull of a set of n + 1 affinely independent
points, in some Euclidean space of dimension n or higher

10A k-simplex is said to be o -exposed at any point e, if there exists an empty a ball with eN.S =0 and T = deN S, where Je is
the circle bounding e

' The a-complex of S is the Delaunay triangulation of S, DT(S) restricted to a— circles of radius a

121n constructing the a complex C,, for any k-simplex in K S the condition of o g < o and the ok g ball centered at pg g being
empty is referred to as a test
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-
4 X - Ball

Figure 5: Boundary 0S, defining the evolution of a-complex.

L QQgee ey,

Figure 6: Set of critical {a, } simplices for range of alpha values.

0

Now we get a list of all k-simplices of C, to make up the interior of S, and all simplices on the boundary
0C,, form 0S,. Figure 5 shows the a complex C,, for the set of 10 nodes.

Figure 7a shows a weighted distribution of point set and corresponding a-complex. For sufficiently large
values of «, the a-complex is the Delaunay triangulation DT(S) of S. For lower values of «, distinct
features of the domain are captured as patches (see Figure 7b-d).

When the initial distribution of points is unstructured and coarsely distributed, the construction is involved.
For instance, let us consider the domain of a membrane with a hole (see Figure 8a). For larger values of
«, the local features (like the hole region) remain uncaptured (see Figure 8b) , while at smaller values
(see Figures 8c—8e) not all boundaries of the domain are reconstructed. It is important that the shape
reconstruction procedure is able to recover all the boundaries of the domain in solid mechanics applications.
To achieve this, the above steps of computing the a-complex is slightly modified in the next step.

To reconstruct the whole boundary, we rescale the radius of the a-circle. For any point or node n € S,
let DT(n) € DT(S) denote the simplices incident on n. The conformal a value determines a partial
ordering on DT'(n), with DT'(n) considered as a sequence of simplices with non decreasing alpha values
al <...<a” (see Figure 5). Now, al = 0, since the first simplex in DT'(n) is the point n which appears
at @ = 0. Let o, < a;f be two a values in {a};. Now, the local value of o, at every point is rescaled
according to

7 —
ay, — o,

n
Jr )
Qn,

(36)

i
o, =

where @, is the internal a-scale. This is invariant to Euclidean transformation, and hence is termed as
conformal. A new set of circles whose radii are dependent on internal alpha scales given by ay, (&) =
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() (d) (e)

Figure 7: Evolution of critical a-complexes. (a) Weighted point set distribution; (b) o = 2; (¢) a = 0.35; (d) o = 0.12; and (e)
a = 0.035

(c) (d) (e)

Figure 8: Evolution of critical a-complexes for a membrane with a hole. (a) Delaunay triangulation; (b) a = 1; (¢) a = 0.12; (d)
o =0.1; and (e) a = 0.07.
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a &+ a;, is considered. The conformal a-shape complex is thus obtained by Delaunay triangulation of S,
restricted to Cg.

e The conformal shape is now constructed from the a-complex by computing the medial azis'® and the

local feature size'®. The sampling of points is adapted according to these two values multiplied by a
g

parameter e.

.
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Figure 9: L-shaped domain (a) before a-shaping (b) after a-shaping
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Figure 10: L-shaped domain: Critical a-simplices for (a) a =80 (b) a =35 (¢) a =15 (d) a =4

13The medial axis M (S) of any point set S is defined as the union of the centers of all maximal open balls
14The local feature size of any point is governed by the distance f-(X) = infy car(s) [ X —Y) to medial axis and the corresponding

XY )

. .. . . _ — 1
implicit direction fo(X) = cos (7“)(“ T
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Figure 11: L-shaped domain (a) Conformal o shape; and (b) Plot of shape function at node A.

To demonstrate this, we consider an L shaped domain with irregular nodal distribution, the critical a simplices
are shown in Figure 10. The conformal alpha shape for the L-shaped domain (see Figure 10a) and the plot of
shape functions at the renterant corner node A is shown in Figure 10b. For a general cellular domain, the
Delaunay triangulation before and after o shaping are shown in Figure 10d.

Figure 12: Cellular domain; (a) before a-shaping; and (b) after a-shaping.

6. Numerical examples

The proposed algorithm for the gradient continuum is now applied to numerical examples. Firstly, we study
the convergence of numerical results by a-NEM in a geometrically non-linear setting. For this study, we consider
the Cook’s membrane example. Secondly, it is desired to demonstrate that the gradient elasticity theory can
remove strain singularity and stress amplifications from typical examples of classical elasticity. This is shown
by considering the effect of the length scale parameter in the constitutive law. We first consider a rectangular
specimen with an inhomogeneity in the form of a central hole under uniaxial tension. The next examples
include an L-shaped specimen subjected to shear deformation, a block under uniaxial compression and finally
a rectangular specimen with an edge crack under uniform axial tension. In all these examples, the boundary
conditions consists of homogeneous Neumann boundary conditions for the gradient deformation map.

6.1. Cook’s membrane problem

A tapered panel clamped on one side with a shear loading on the opposite side is considered as shown in
Figure 13. Lamé constants of A = 73.5 GPa, p = 36.5 GPa and Poisson ratio v = 0.25 are considered. For the
convergence study four different discretizations of 235, 722, 2767 and 6677 nodes are considered. 3 x 3,6 x 6
and 25 x 25 quadrature rule is used for the numerical integration in each of these cases. Uniform traction is
applied in incremental steps. The displacements at node A (with coordinates X = 48 mm and Y = 50.4 mm)
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44

Figure 13: Cook’s membrane problem

are evaluated at various load steps. Figure 14 shows the plot of the displacement computed at node A for four
discretization and various quadrature rules.

It is observed that the displacement convergence has a lower bound trend, with a progressive decrease in
displacements with increasing quadrature and nodal degrees of freedom. The method shows good convergence
at finite strains. In a gradient continuum context, to study the effect of length scale on displacements at
various load steps, the displacements were evaluated at the node A for various load steps. Five length scales
of Lo/5,Lo/10,Lo/20, Lo/40 and Lo/oco , where Ly = 48mm was considered. A quadrature of 25 x 25 was
considered for the analysis. The plot of displacement with load factor (defined as the ratio of applied load at
the end of a load step to maximum load) is shown in Figure 15. Tt is observed that the overall behavior of the
specimen becomes stiffer with increasing internal length. It is very clear that the length scales has a significant
and consistent effect on the displacements.

Vertical displacement at Node A {mm)

0.6

Load Factor

041

0.3

——&— 3x3 Quadrature
0.9+ —o— L5
2zr —¢— 6x6 Quadrature L0
—©— 25x25 Quadrature 08 —a—Ly20
—o—Ly40
0.7 L Jininity

051

1s

[}

L
1000

L
2000

L
3000

L
4000

L
5000

L
5000

L
7000

8000

L L
5 10

L
15

L
20

25

Numbexr of degrees of frassdom

Figure 14: Plot of displacement at node A for Cook’s mem-
brane problem.
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Figure 15: Plot of displacement at node A versus load factor
for various length scales.
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6.2. Uniazial loading of a rectangular specimen with a hole

In a rectangular specimen of length Ly = 36 and width Ly/3, an inhomogeneity is introduced by means of
a centered circular hole of radius r = Ly/12, as shown in Figure 16a. The Delaunay triangulation of the grid
results in triangles in the hole region. As mentioned before, it is desired to modify the neighborhood in the
non-convex hole region and remove the triangles outside the domain. Thus, a-shaping is performed to reproduce
the entire rectangular specimen with hole region and the final grid is as shown in Figure 16b.

The nodes at the bottom edge of the discretized geometry are fixed in longitudinal direction, a constant
displacement boundary condition in the same direction is applied on the top nodes step wise, until the final
length of 1.5L¢ is reached. Lamé constants of A = 73.5 GPa, u = 36.5 GPa and Poisson ratio of v = 0.25 are
considered. Five internal length scales namely L/3, Lo/12, Ly/48, Lo/120 and Lo/oo are used to investigate
the effect of length scales on the stiffness and the resulting field of the Cauchy type stresses and invariants.

The residual force at the bottom is measured for various load steps. A plot of the total residual force along
CD versus the displacement at top AB is plotted for various length scales as shown in Figure 17. For the same
displacement there is an increase in residual force with increase in length scale. This clearly indicates that the
overall behavior of the specimen become stiffer with increasing internal length.

The distribution of the Cauchy type stress component ¢1; at various length scales is shown in Figure 18. It
can be observed that the deformation of the hole is less distinct compared to the overall deformation indicating
a stiffening effect with increase in length scale. Moreover the stress field is influenced more distinctively in a
wider region by the inhomogeneity represented by the hole. At length scale of [ = Ly /oo theoretically the results
obtained from the C* NEM in a limiting sense are identical to those obtained from the C° NEM results. To study
this effect, a comparison of the result is made with those obtained from the C° NEM and all values are plotted
to the same scale as those obtained from C° NEM. It is seen from Figure 18 that there is a slight disturbance
in the distribution of the stresses and reduction in maximum values because of possible stiffening effect with C*
NEM when [ = Ly/oc. This may be attributed to the decoupling of the residuals arising from the displacements
and its gradients.

)]

L=28
o
-

Waiz

Befure o shaping After o shaping

(a) (b)

Figure 16: (a) Rectangular specimen with a circular hole (b) Delaunay triangulation and discretization after a-shaping for the
rectangular specimen with circular hole.

Figure 19 shows the distribution of the Cauchy type stress component 95 for various length scales. Figure 20
shows a plot of the components of gradients of F' at a length scale of | = Lo/3. It is observed that F' is not
symmetric. To study the effect of the Cauchy-type hyperstress with length scale a double stress invariant Ig
defined as I := T}, + Toy + Tias + 7oy, is computed. Figure 21 shows the plot of the double stress invariant
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Figure 17: Plot of displacements along AB versus reaction force at C'D for various length scales for the rectangular specimen with
a circular hole.
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Figure 18: Plot of Cauchy type stresses 011 at various length scales for rectangular specimen with circular hole (a) I = Lo/3 (b)
l=1Lo/12 (c) l = Lo/48 (d) I = Lo/120 (e) I = Lo/oo (f) Lo/oo CO-NEM
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for various length scales. At larger length scales the effect of double stress is dominant, and results in increased
stiffness.

(a) (b) ()

Figure 19: Plot of Cauchy type stresses o22 at various length scales for rectangular specimen with circular hole (a) [ = Lo/3 (b)
I = Lo/12 (¢) I = Lo /48 (d) 1 = Lo/120 (e) L = Lo /oo (f) Lo /oo CO-NEM .
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Figure 20: Plot of deformation gradient degrees of freedom (a) F'11(b)F22 (c) F12 (d) F21 at length scale of I = Lg/3 for rectangular
specimen with circular hole.

6.3. Biaxial loading of a L-shaped specimen

A L-shaped specimen of the dimensions shown in Figure 22 is considered. The initial discretization is shown
in Figure 23. To reproduce the shape along non-convex boundaries a conformal a-shaping as discussed in the
previous section has been performed. The specimen is subjected to a prescribed displacement in the X direction
along FF and Y direction along BC.

To prevent rigid body motion all the deformation degrees of freedom at the re-entrant corner are additionally
fixed. The Lamé constants are taken as A = 73.5 GPa, u = 36.5 GPa and Poisson ratio v = 0.25 for the analysis.
The analysis is performed for five length scales, namely Lo/2, Lo/5, Lo/10, Ly/100 and Lg/oo. The plot of the
Cauchy type stress 011, 022 and o192 for various length scales are shown in Figure 24, Figure 25 and Figure 26,
respectively. From these plots it is again observed that increasing the length scale makes the system stiffer and
the stress distribution is spread out and is less affected by the re-entrant corner. A plot of the variation of the
double stress invariant Ig for various length scales is shown in Figure 27.
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Figure 21: Plot of double stress invariant I at various length scales for rectangular specimen with circular hole.(a) I = Lo/3 (b)
l = Lo/12 (c) Il = Lo/48 (d) I = Lo/120 (e) Il = Lg/oo

Before aushaping After o shapiing

Figure 23: Discretization of L-shaped example.

Figure 24: Plot of Cauchy stress 011 at various length scales for L-shaped example.(a) | = Lo/2 (b) Il = Lo/5 (¢) I = Lo/10 (d)
1= Lo/100 (e) l = Lo/oo (f) | = Lo /oo CONEM
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L

Figure 25: Plot of Cauchy stress 012 = 021 at various length scales for L-shaped example.(a) | = Lo/2 (b) I = Lo/5 (c¢)l = Lo/10
(d) I = Lo/100 (e) I = Lo /oo (f) I = Lo/oo CO-NEM

Figure 26: Plot of Cauchy stress o22 at various length scales for L-shaped example.(a) | = Lo/2 (b) I = Lo/5 (c)l = Lo/10 (d)
I = Lo/100 (¢) I = Lo/oo (f) I = Lo /oo CO-NEM

(a)

Figure 27: Plot of double stress invariant I at various length scales for L-shaped example.(a) I = Lo/2 (b) I = Lo/5 (c)l = Lo/10
(d) Il = Lo/
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Figure 28: Square block example. Figure 29: Discretization for the square block example.

6.4. Uniaxial compression of a square block

A square block of the dimensions shown in Figure 28 is subjected to a non-uniform compression. Displace-
ments are applied along FF' and GH so as to induce non uniform compression. It is desired to investigate the
resulting Cauchy stress distribution at various length scales. Because of the symmetry only one-half of the block
is considered for convenience. The block is discretized as shown in Figure 29. Figure 30 shows the distribution
of the Cauchy stress 011 at various length scales. Figure 31 and Figure 32 display the distribution of the Cauchy
stress o992 and 012 at various length scales. Again the main feature to observe is that the overall behavior of the
specimen becomes stiffer with increasing internal length.

Figure 30: Plot of Cauchy stress 011 at various length scales for the square block example. (a) | = Lo/2 (b) I = Lo/5 (¢) | = Lo/10
(d) 1= Lo/100 (e) I = Lo/co (f) I = Lo/oo (g) C°-NEM

ER B ]

0.5. Uniaxial loading of a cracked specimen

A rectangular specimen with an edge crack under uniaxial quasi-static loading is considered (see Figure 33a).
The discretization is shown in Figure 33b. The displacements at the bottom edge AB is fixed and uniaxial
displacement is applied at the top edge C'D. The neighborhood at the crack edge is modified by imposing a
visibility criterion as given in Sukumar et al. (1998). The influence of the variation of length scale on the Cauchy
type stresses are studied. Five length scales Lo/4, Lo/10, Lo/50, Lo/100 and Lg/oo are considered for the
analysis. For the variation of the internal length the Cauchy type stress 011 is plotted in Figure 34. Figure 35
shows the distribution of the normal component of the Cauchy stress og2 in the loading direction. A comparison
of the stresses at zero length scale is made with those obtained from C° NEM. It is observed that the possible
decoupling between the residuals results in a slight disturbance of stresses obtained from C!' NEM. The double
stress invariants are shown in Figure 36. The plot indicates the increase in the stiffness with length scales.
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Figure 31: Plot of Cauchy stress o22 at various length scales for the square block example. (a) | = Lo/2 (b) l = Lo/5 (¢) | = Lo/10
(d) I = Lo/100 (e) I = Lo /oo (f) I = Lo/oo (g) CO-NEM

Figure 32: Plot of Cauchy stress 012 = o021 at various length scales for the square block example. (a) [ = Lo/2 (b) I = Lo/5 (c)
l=Lo/10 (d) I = Lo/100 (e) I = Lo/oo (f) I = Lg/oc (g) CO-NEM
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Figure 33: (a) Rectangular specimen with an edge crack. (b) Nodal discretization for the edge crack example.
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Figure 34: Plot of Cauchy type stresses o11 at various length scales for the edge crack example. (a) | = Lg/4 (b) I = Lo/10 (c)
1= 1Lo/50 (d) I = Lo/100 (e) I = Lo/oo (f) I = Lo/oo C°— NEM
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Figure 35: Plot of Cauchy type stresses o2z at various length scales for the edge crack example. (a) I = Lg/4 (b) I = Lo/10 (c)
1= 1Lo/50 (d) I = Lo/100 (e) I = Lo/oo (f) I = Lo/oo C°— NEM
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Figure 36: Plot of double stress invariant I at various length scales for the edge crack example. (a) [ = Lo/4 (b) | = Lo/10 (c)
l=Ly/100 (d) I = Lo/o0
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7. Summary and conclusions

In the present work, a gradient continuum formulation is considered. Besides the first gradient, the higher
gradients of the displacements are also accounted for in the energy expression. When we consider the second
gradient of deformation and ignore even higher gradients, we obtain the strain gradient theory or simply denoted
as gradient continuum. From a computational setting the gradient continuum requires no additional degrees of
freedom, but results in higher order boundary conditions and has C'' continuity requirements. To achieve this
in the present work an implementation of gradient elasticity using the conformal a~-Natural Element Method (a-
NEM) has been made. The conformal a-NEM allows the construction of models entirely in terms of nodes and also
ensures the linear precision of the interpolant over convex and reasonably also over the non convex boundaries.
C! natural neighbor interpolants are achieved by a simple transformation of Farin’s interpolant, which are
obtained by embedding Sibson’s natural neighbor coordinates in Bernstein-Bézier surface representations of a
cubic simplex. Numerical examples were presented that demonstrated the efficiency and accuracy of the method
and the length scale effects. It was observed that the use of gradient elasticity theory removed stress amplification
and strain singularity from typical examples of classical elasticity.

Appendix A. Derivation of higher order equilibrium and boundary conditions

Here we give the main steps of the derivation of the higher order equilibrium and boundary conditions. From
Eq. (7) we have

S = / [P :0F + QféG] dV + 811" = 0 (A1)
Bo

Firstly, the internal potential energy term of the Eq. (A1) is partially integrated (the second term two times) to
obtain in a first step

SII = / Div (8¢ - P)dV — / 5 - DivPdV + / Div (6F : Q)dV — / JF : DivQdV (A2)
Bo Bo Bo Bo

and eventually in a second step

SN = /Div (dp - P)dV — /5go -DivPdV + /Div (0F : Q)dV
Bo

Bo BO

- / Div (6 - DivQ) dV + /5<p - Div (DivQ)dV (A3)
B() BO

After application of the Gauss’s theorem on the first, third and the fourth terms of Eq. (A4) and grouping of
corresponding terms we obtain:

ST = /5<p .Div [DivQ — PldV + / 5p - [P —DivQ]- N dA + / 5F : Q- N]dA (A4)
Bo OBy 9Bo

The first and second term of Eq. (A4) contribute to Eq. (9) and Eq. (10), respectively. The variation of F = Vx¢
in the third term is not independent of the variation of ¢ on 0By , because if d¢ is known on 9Bj so is the
surface gradient of d¢. Therefore this term cannot directly contribute to the boundary conditions and should
be further transformed. Here, the above mentioned material gradient decomposition into normal and tangential
parts is used and we obtain:

/Vxégo:[Q-N]dA: /va-[Q:[N@N]]dAJr/v§5¢:[Q-N]dA (A5)
9Bo 9Bo 9B
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The first term contains independent variations V yd¢. Integrating the second term by parts we get,

/v§5¢:[Q-N]dAE/[VX5¢-T]:[Q-N]dA=/[vx(égo-[Q-N])]:TdA
9By 9By OBg
_ / 56 Vx (Q-N) : TdA (AG)
9By

with T' = [I — N ® N] the tangent projection to the boundary. Now the first term on the right hand side of
Eq. (A6) can be transformed according to the so called surface divergence theorem stemming essentially from
the well known Stokes theorem for the closed surface 9By

/[VX'U:T+K'U-N]dA:0 (A7)
9By

whereby K = —VxN : T = —V% N : I is the total curvature of the surface dB,. Application of this transfor-
mation leads to the final format of second integral on the right hand side of Eq. (A5) as

/vf(acp:[Q-N]dA: /5¢-L(Q-N) dA (A8)
9By 9By

Here the differential operator L is defined as'®
L(e)=—-K(e) - N-V%(e):T (A9)

Using these expressions the variation of the total internal potential energy can thus be written as

STt — /&p Div [DivQ — PldV + / 5p - [[P—DivQ]- N + L(Q - N)]dA
B, 0B,

+ / Ve [Q: [N © NJJdA (A10)

Each integral in this expression contains only independent variations and therefore the equilibrium and boundary
conditions can be written in the form given in Eq. (9) to Eq. (12).
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