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Abstract

In this work, we model the basic mechanisms of the interaction between phase-transformations and plasticity
within a one-dimensional constitutive framework. Efficient algorithms are presented, facilitating to solve the
underlying evolution equations with high numerical stability at low numerical costs. Furthermore, a family of
functions covering physically reasonable classes for the inheritance of plasticity in the context of evolving phases
is proposed and discussed by means of several representative numerical examples.

Key words: Phase-transformations, Plasticity, Mixture-theory

1. Introduction

Functional materials like TRIP-steels and shape memory alloys offer a great potential for the industrial
manufacturing of sophisticated components benefitting from the advantages that these materials can provide,
such as locally varying hardness and stiffness. The need of a reliable manufacturing and application of such
components leads to the demand of accurate constitutive models not only to predict the material’s response by
means of simulations, but also in view of material and structural design purposes. However, the coupling of
phase-transformations and plasticity involves the interaction of multiple complex physical mechanisms, which
have not yet been completely understood.

Micromechanically motivated material models are characterized by considering the microstructure of a mate-
rial and its stress- or temperature-driven evolution. As shown in Bain (1924) and Bowles and MacKenzie (1954),
in particular the kinematics of martensitic (i.e. diffusionless) solid-solid phase-transformations are characterized
by homogeneous deformations of the crystal lattice. Thus, the transformation kinematics can be captured by
so-called Bain-strains represented for example by the right stretch tensor U tr in a continuum mechanical context
(see for example James and Hane (2000); Bhattacharya (2003)). Besides that, the material’s microstructure can
be approximately accounted for by matrix-inclusion homogenization schemes as suggested in Sun et al. (1991);
Sun and Hwang (1993); Cherkaoui et al. (2000). These schemes approximate effective material properties for the
phase mixture being bounded by the Voigt and Reuss limits, respectively. In this regard, a promising method
for the determination of a suitable effective material response is referred to as energy relaxation.

The concept of energy relaxation is dedicated to the computation of the quasiconvex energy hull of an
underlying multi-well free energy potential. It offers the possibility to predict the energetically most favorable
arrangement of the underlying microstructure. A comprehensive treatise on quasiconvex analysis can be found
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in Morrey (1952); Ball (1977); Dacorogna (1989) among others. Since the exact determination of the desired
energy hull is only possible in rare cases as e.g. shown in Kohn (1991); DeSimone and Dolzmann (1999), the
quasiconvexification is mostly approximated by upper and lower bounds as shown in Pagano et al. (1998); Ortiz
and Repetto (1999); Stupkiewicz and Petryk (2002); Miehe et al. (2004). An extension of the energy relaxation
concept has recently been presented in Bartel and Hackl (2009), where the deformations within each phase are
directly derived from a superimposed displacement fluctuation field. Moreover, a distinction between elastic and
dissipative internal variables is introduced therein in order to, on the one hand, determine a well-suited energy
hull while, on the other hand, being able to account for the hysteretic behaviour of shape memory alloys. In this
context, the evolution of dissipative variables can be established by ordinary differential equations derived from
inelastic potentials according to e.g. Mielke and Theil (1999); Mielke et al. (2002).

The mentioned micromechanically motivated models are mainly based on the minimization of total energy
and total power, respectively. In contrast to this, the models presented in Berezovski and Maugin (2007); Maugin
and Berezovski (2009); Abeyaratne and Knowles (1990, 1993, 1997) are based on the derivation of driving forces
directly acting on the propagating phase front. However, the increase of accuracy and physical plausiblity enabled
by micromechanical models is always accompanied by a significant increase of computational effort. In particular,
the determination of energetically favorable arrangements of phases subjected to compatibility conditions (rank-
one connections) leads to immense numerical costs. Moreover, micromechanical models are usually capable
of simulating the behaviour of single crystals—in order to extend these models to polycrystalline materials,
appropriate scale-bridging methods are required. Thus, the computation of large macroscopic problems—for
example in the context of finite element simulations—is often realized using phenomenological approaches. These
approaches, as for example introduced in Helm and Haupt (2003); Auricchio and Taylor (1997); Raniecki et al.
(1992), are mainly based on thermodynamics. In addition to the first and second law of thermodynamics, the
concept of generalized irreversible forces and fluxes, as established in Truesdell and Toupin (1960) amongst
others, is used in order to derive evolution equations for the internal variables. An extension of the model
proposed in Raniecki et al. (1992) has been presented in Müller and Bruhns (2006) in terms of finite strains and
a self-consistent Eulerian theory accounting for heat generation during phase-transformations.

Another class of thermodynamical models is related to statistical considerations, resulting in transformation
probabilities. As for example elaborated in Achenbach (1989); Abeyaratne and Knowles (1993); Huo and Müller
(1993); Abeyaratne et al. (1994); Seelecke (1996); Müller and Seelecke (2001), these models are based on multi-
well Helmholtz free energy potentials. The nucleation criteria are formulated in terms of energy barriers, which
lead to statistically derived transformation probabilities governing—together with Boltzmann-based transition
attempt frequencies, see e.g. Govindjee and Hall (2000)—the evolution of material phases.

The goal of this contribution is to enhance the statitics-based phase-transformation model described in Govin-
djee and Hall (2000); Ostwald et al. (2010) in order to take into account plasticity as well as the interaction
between phase-transformation and plasticity effects by introducing a so-called plastic inheritance law. The model
is presented in Section 2, where extended Helmholtz free energy functions for each material phase are presented,
taking into account plastic strains as new variables for each individual phase. Based on the extended multi-well
energy potentials, the probabilistic phase-transformation model is derived in Section 2.1. Moreover, the differ-
ential equations describing the evolution of plasticity as well as the potential-based derivation of the individual
plastic driving forces are shown in Section 2.2 and 2.2.1, respectively. The coupling of phase-transformation and
plasticity effects is incorporated by means of a staggered algorithm. To this end, an inheritance algorithm for the
inheritance of plastic strains resulting from a propagating phase front is introduced in Section 2.3. Moreover, two
physically reasonable exponential-type inheritance probability functions are presented in Section 2.3.1 and 2.3.2.
Details on the numerical implementation of the model are provided in Section 3, followed by numerical examples
shown in Section 4, where the model is applied not only to shape memory alloys (see Section 4.2), but also to
TRIP steel (see Section 4.3). It is shown that the model nicely reflects the actual physical behaviour of both
types of materials.
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2. A model for the interaction of phase-transformations and plasticity

The one-dimensional phase-transformation model is based on mixture theory, where we make use of the Voigt
assumption, i.e. all material phases are subject to the same strain ε. The implemented phase-transformation
model is capable of handling an arbitrary amount of material phases, where the volume fraction

ξα
def= lim

v→0

(
vα

v

)
(1)

of each phase α ∈ {1, . . . , ν} ⊂ N is subject to the restrictions

ξα ∈ [0, 1] ⊂ R ,
∑
α

ξα = 1 ,
∑
α

ξ̇α = 0 . (2)

While the validity of (2)a and (2)b is evident, (2)c follows from mass conservation. Each phase is presumed to
behave thermo-elasto-plastically, thus a Helmholtz free energy function ψα = ψ̂α(ε, εαpl, θ) of the form

ρ0ψ
α =

1
2
Eα[ε− εαtr − εαpl]

2 − ζαEα[ε− εαtr − εαpl][θ − θ0]

+ ρ0c
α
p θ

[
1− log

(
θ

θ0

)]
− ρ0λ

α
T

[
1− θ

θ0

]
(3)

is assigned to each phase α, with E the Young’s modulus, ε = ∇xu the total strains, εtr the transformation
strains, εpl the plastic strains, ζ the coefficient of thermal expansion, θ the current absolute temperature, θ0
the reference temperature, cp the heat capacity, and λT the latent heat of the respective material phase. The
overall free energy of the mixture Ψ = Ψ̂(ε, ε1d

pl , θ, ξ) =
∑
α ξ

αψα, with ξ = [ξ1, . . . , ξν ] and ε1d
pl = [ε1pl, . . . , ε

ν
pl],

can directly be obtained from the free energy contributions of the respective constituents, since the distortional
energy of the phase boundaries is neglected here.

Based on this, the Gibbs potential G = Ĝ(∂Ψ/∂ε, ξ, θ) can be obtained by carrying out a Legendre-
transformation, i.e.

G = − sup
ε

⎛⎝ ∂Ψ̂(ε, ε1d
pl , θ, ξ)
∂ε

∣∣∣∣∣
θ,ε1d

pl

ε− ρ0Ψ

⎞⎠ (4)

= − sup
ε

(∑
α

ξα [σε− ρ0ψ
α]

)
(5)

= − sup
ε

(∑
α

ξαgα

)
, (6)

where σ = ∂Ψ/∂ε|θ,ε1d
pl

= σ̂(ε, ε1d
pl , ξ, θ) is the stress acting in the one-dimensional continuum considered and

gα = ĝ α(σ, ε, εαpl, θ)
def= σε− ρ0ψ

α represents the contribution of phase α to the overall Gibbs potential G.

2.1. Evolution of volume fractions
For the evolution of the volume fractions ξα we use an approach based on statistical physics. In this regard,

a transformation probability matrix Qν ∈ R
ν×ν introduced in Govindjee and Hall (2000) is used, facilitating to

derive the evolution of volume fractions as

ξ̇ = Qν · ξ , (7)

wherein the notation •̇ denotes the material time derivative. Since we restrict ourselves to two material phases in
this work, namely austenite (A) and martensite (M), the according transformation probability matrix Q2 ∈ R

2×2

reduces to

Q2 = ω

[−PA→M PM→A

PA→M −PM→A

]
�= Qt

2 (8)



66 Ostwald et al. / International Journal of Structural Changes in Solids 3(2011) 63-82

with ω the transition attempt frequency and Pα→β = P̂α→β(θ, bα→β) the probability of a transformation of one
phase α to the other phase β. Note that (8) refers to ξ = [ξA, ξM]t ∈ R

2. Furthermore,
∑

iQij = 0 ∀ j guarantees
that (2)c is fulfilled.

According to Achenbach (1989), the transformation probabilities necessary to assemble Q• can be obtained
from

Pα→β = exp
(−Δv bα→β

k θ

)
, (9)

with Δv the constant transformation region’s volume, bα→β the energy barrier for the transformation from phase
α to phase β, k the Boltzmann’s constant, and θ the given temperature. Note that, in general, bα→β �= bβ→α

and thus Pα→β �= Pβ→α holds. The energy barriers can be determined from

bα→β = ĝ α(σ, ε�α,β , θ)− ĝ α(σ, εmin
α , θ) (10)

with

ε�α,β = inf
gα,gβ

{
ε | ĝ α(σ, ε, θ)|σ,θ = ĝ β(σ, ε, θ)|σ,θ

}
(11)

and

εmin
α =

{
ε | ∂ĝ

α(σ, ε, θ)
∂ε

∣∣∣∣
σ,θ

= 0

}
, (12)

where ĝ α(σ, ε�α,β , θ) = ĝ β(σ, ε�α,β , θ) gives the value of the energy potentials at the intersection of the parabolic
phase potential functions for two material phases (α, β) in strain space, while ĝ α(σ, εmin

α , θ) denotes the minimum
energy potential of a particular phase α for fixed stresses and temperature. Accordingly, the difference of both
energy values (10) gives the energy barrier that has to be overcome for a transformation from phase α to β.

2.2. Evolution of plastic strains
To incorporate plasticity, we—for conceptual simplicity—assume von Mises-type plasticity with linear pro-

portional hardening. Based on the overall free energy potential, the plastic driving force qαpl,Ψ can be derived for
each phase α, see Section 2.2.1 for details. With the driving force and the current yield stress Y α at hand, the
yield function Φα = Φ̂α(Y α, qαpl,Ψ ) determining the admissible elastic domain in phase α, is given as

Φ̂α(qαpl,Ψ , Y
α) = |qαpl,Ψ − ξαbα| − ξα Y α ≤ 0 . (13)

The current yield stress Y α = Ŷ α(γα) = Y α0 + Hα γα is given by the initial yield stress Y α0 being modified by
Hα γα due to accumulated plastic strains γα of the respective material phase, where Hα denotes the constant
hardening modulus of phase α. The individual back stress ξαbα is additionally considered in order to prevent
plastic flow occurring in the initial equilibrium state. To be specific, the underlying Voigt assumption leads to
an initial stress of

bα
def= σ̂ α(ε = 0, εαpl = 0, θ)

=
∂ψ̂α(ε, εαpl, θ)

∂ε

∣∣∣∣∣
θ,εα

pl=0,ε=0

= −Eαεαtr + ζαEαεαtr[θ − θ0] (14)

that acts in each phase α and, in consequence, is considered as a back stress in the yield function. Based on the
yield function presented, we make use of an associated flow rule, facilitating to derive the evolution law for the
plastic strain in phase α by means of

ε̇αpl = λ̇α
∂Φ̂α(qαpl,Ψ , Y

α)
∂qαpl,Ψ

= λ̇α sgn
(
qαpl,Ψ − ξαbα

)
(15)

with an appropriate Lagrangian multiplier λ̇α.
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2.2.1. Remarks on the derivation of the plastic driving force
The stress-type force qαpl,Ψ = q̂ αpl,Ψ (ξα, ε, εαpl, θ) driving the evolution of plasticity in phase α can be derived

from the overall free energy Ψ according to

qαpl,Ψ = −∂Ψ̂(ε, ε1d
pl , θ, ξ)

∂εαpl

∣∣∣∣∣
θ,ε,ξ

(16)

= − ∂

∂εαpl

∣∣∣∣∣
θ,ε

∑
α

ξαψ̂α(ε, εαpl, θ) (17)

= −ξα ∂ψ̂α(ε, εαpl, θ)
∂εαpl

∣∣∣∣∣
θ,ε

, (18)

finally resulting in

qαpl,Ψ = ξα
[
Eα[ε− εαtr − εαpl] + ζαEα[θ − θ0]

]
. (19)

Furthermore, the stress acting in the one-dimensional continuum is obtained from

σ =
∂Ψ̂(ε, ε1d

pl , θ, ξ)
∂ε

∣∣∣∣∣
θ,ε1d

pl

(20)

=
∂

∂ε

∣∣∣∣
θ,ε1d

pl

[∑
α

ξαψ̂α(ε, εαpl, θ)

]
(21)

=
∑
α

ξα
∂ψ̂α(ε, εαpl, θ)

∂ε

∣∣∣∣∣
θ,εα

pl

(22)

=
∑
α

ξασα (23)

with σα = σ̂α(ε, εαpl, θ) = Eα[ε− εαtr − εαpl] + ζαEα[θ − θ0] the stress acting in phase α. Comparing this result to
(19) shows that qαpl,Ψ = ξασα.

Alternatively, the plastic driving forces can be derived by considering each phase individually. Using this
approach, the driving force qαpl,ψ = q̂ αpl,ψ(ε, εαpl, θ) yields

qαpl,ψ = − ∂ψ̂α(ε, εαpl, θ)
∂εαpl

∣∣∣∣∣
θ,ε

(24)

= Eα[ε− εαtr − εαpl] + ζαEα[θ − θ0] (25)
= σα . (26)

In particular, this result leads to qαpl,Ψ = ξαqαpl,ψ. Note that the consideration of the volume fraction ξα within
the plastic driving force of each phase α guarantees that q̂ αpl,Ψ (ξα = 0, ε, εαpl, θ) = 0, and thus ε̇αpl = 0 as long as
ξα = 0, i.e. no evolution of plasticity can occur within a phase of zero volume fraction.

2.3. Plastic inheritance

When the phase front of a phase α evolves throughout a crystal from time step nt to n+1t, the question arises,
whether plastic strains present in the decreasing phase β are inherited by the phase front of the increasing phase
or not (see Figure 1). Conceptually speaking, one has to specify to which amount a positive volume fraction
increment Δξα = n+1ξα − nξα > 0 of phase α transfers plastic strains from phase β to phase α. In general, the
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updated plastic strains ε̃αpl = ̂̃εαpl(
nξα,Δξα, εαpl, ε

β
pl, Π

β→α) in phase α can be determined via

ε̃αpl =
1

n+1ξα

[
nξα εαpl +Πβ→αΔξα εβpl

]
, (27)

where Πβ→α reflects the probability of phase α inheriting the dislocations present in phase β (see Figure 1).
If one further assumes, that the diffusionless lattice shearing taking place during the phase-transformations
considered neither generates nor annihilates any dislocations, i.e. the overall amount of plastic deformations
remains constant in terms of

n+1ξα ε̃αpl + n+1ξβ ε̃βpl = nξα εαpl + nξβ εβpl , (28)

then the updated plastic deformations ε̃βpl = ̂̃ε βpl(nξβ ,Δξα, ε
β
pl, Π

β→α) remaining in the decreased phase β are
obtained from

ε̃βpl =
1

n+1ξβ
[
nξβ −Πβ→αΔξα

]
εβpl . (29)

As we restrict ourselves, for the sake of simplicity, to two phases, it is obvious that the increase Δξα of phase
α is related to the decrease Δξβ of phase β via

Δξβ = n+1ξβ − nξβ = −Δξα , Δξβ < 0 (30)

due to mass conservation, thus leading to

n+1ξβ = nξβ −Δξα . (31)

Comparing (29) and (31) then shows that, in case of Πβ→α = 1, the plastic deformations in the decreasing phase

are not affected by the change of volume fractions, i.e. ̂̃ε βpl(
nξβ ,Δξα, εβpl, Π

β→α = 1) = εβpl. On the other hand,
in case of Πβ→α = 0, i.e. if all dislocations are pushed rather than inherited by the propagating phase front of
phase α, the plastic strains in phase β increase inversely proportional to the decrease of volume fraction.

However, it is physically reasonable to assume that the inheritance probability is not constant, but rather a
function depending on the remaining volume fraction ξβ and plastic strain εβpl of the decreasing phase β, as well
as on further material parameters characterizing the actual functional dependency. To this end, two reasonable
approaches for introducing exponential-type inheritance probability functions, namely a convex and a concave
one, Πβ→α

cvx = Π̂β→α
cvx (ξβ , εβpl;κ) and Πβ→α

ccv = Π̂β→α
ccv (ξβ , εβpl;κ, ε

β
pl,sat), respectively, are presented in the following.

2.3.1. Convex inheritance probability function
The inheritance probability function considered is subjected to two physically reasonable restrictions. First,

in case that the volume fraction of the decreasing phase β is very large, i.e. ξβ ≈ 1, a propagating phase front
of phase α will most likely push dislocations present in phase β, since the dislocation density1—being inversely
proportional to the volume fraction—in β is rather low in this case. In consequence and as the first condition,
we require the inheritance probability function to match Π̂β→α

cvx (ξβ = 1, εβpl;κ) = 0. On the other hand, if the
remaining volume fraction ξβ of the decreasing phase β tends to zero, the dislocation density takes high values
so that the dislocations (or rather plastic strains) remaining in phase β are forced to be inherited by the evolving
phase α, i.e. Π̂β→α

cvx (ξβ = 0, εβpl;κ) = 1. One exponential-type ansatz for an inheritance probability function
fulfilling these restrictions is

Π̂β→α
cvx (ξβ , εβpl;κ) = [1− ξβ ] exp

(
−κ ξβ
|εβpl|

)
. (32)

1The phrase dislocation density does not refer to curl(εpl), respectively ∂xεpl here. In the current context, we rather use this
denomination as a synonym for the density of plastic strains.
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α β

(a) Initial state: the phase front of α is about to move.

α β

(b) Πβ→α = 0, i.e. all dislocations are pushed by the phase-front and remain
within phase β.

α β

(c) Πβ→α = 1, i.e. all dislocations within the volume that undergoes a phase-
change are inherited to the growing phase α.

Figure 1: Dislocations can either be inherited or pushed by the propagating phase front of an evolving
phase α. Here, the two special cases, i.e. no inheritance (b) and full inheritance (c) of dislocations
during phase front propagation are shown. However, the actual physical behaviour of a material
regarding inheritance of dislocations—or rather plastic strains—can be expected to lie in between both
extreme cases. Therefore an inheritance probability function Πβ→α = Π̂β→α(ξβ , εβpl; ...) ∈ [0, 1] ⊂ R,
depending on the volume fraction ξβ and plastic strain εβpl of phase β as well as on material parameters,
is introduced in this work (see Sections 2.3.1 and 2.3.2).
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Π̂β→α
cvx (ξβ , εβpl;κ = 0.1)
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Π̂β→α
cvx (ξβ , εβpl = 0.025;κ)
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Figure 2: Convex inheritance probability function depending on volume fraction ξβ and plastic strain
εβpl for given parameter κ = 0.1 (left), and the function depending on ξβ and κ for given plastic strain
εβpl = 0.025 (right).

For an exemplary material parameter κ = 0.1, the development of this inheritance function is visualized in
Figure 2. Besides that, the influence of the parameter κ for an exemplary fixed plastic strain of εβpl = 0.025 is
displayed. As the figure shows, the proposed family of parametric inheritance functions is convex in ξ for all
parameters κ ∈ R

+.

2.3.2. Concave inheritance probability function
As an addition to the convex2 inheritance probability function shown in Section 2.3.1, a concave2 exponential-

type inheritance function is presented in the following. As before, the physical restrictions, i.e. Π̂β→α
ccv (ξβ =

1, εβpl;κ) = 0 and Π̂β→α
ccv (ξβ = 0, εβpl;κ) = 1, are required to be fulfilled. To be specific, the function

Π̂β→α
ccv (ξβ , εβpl;κ, ε

β
pl,sat) =

1− exp

(
−κ [1− ξβ ]
εβpl,sat − |εβpl|

)

1− exp

(
−κ

εβpl,sat − |εβpl|

) , (33)

which again depends on a material parameter κ ∈ R
+, is of exponential type, but provides a concave behaviour

in ξ. As above, we require the inheritance probability to increase with increasing plastic strain. Accordingly, a
plastic saturation strain εβpl,sat ∈ R

+, which can also be regarded as a material-dependent quantity, is introduced
here. If the magnitude |εβpl| of the plastic strain present in phase β reaches the saturation strain εβpl,sat, the
inheritance probability tends towards 1, i.e. Π̂β→α

ccv (ξβ , εβpl → εβpl,sat;κ, ε
β
pl,sat)→ 1 ∀ ξβ < 1. Figure 3 shows the

development of the concave inheritance function for a given parameter of κ = 0.1 and an exemplary saturation
strain of εβpl,sat = 0.05. Furthermore, the actual influence of κ on the inheritance probability function is presented
for an exemplary plastic strain of εβpl = 0.025.

2Here and in the following, by convex or concave inheritance functions, we mean convex or concave in ξ.
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Π̂β→α
ccv (ξβ , εβpl;κ = 0.1, εβpl,sat = 0.05)
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Π̂β→α
ccv (ξβ , εβpl = 0.025;κ, εβpl,sat = 0.05)
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Figure 3: Concave inheritance probability function depending on volume fraction ξβ and plastic strain
εβpl for given parameters κ = 0.1 and εβpl,sat = 0.05 (left), and the function depending on ξβ and κ for
given plastic strain εβpl = 0.025 (right).

3. Numerical integration of evolution equations

The solution of the strongly non-linear system of evolution equations (7), required to obtain an update of the
internal variables by means of volume fractions, is traditionally carried out using classical implicit integration
schemes in combination with Newton-type iterations. In contrast to that, in the current work an explicit
integration scheme, also discussed in Ostwald et al. (2010), is applied. The integration scheme is based on
the assumption that the transformation rates of volume fractions ξ̇ proceed linearly within a time step Δt =
n+1t − nt > 0, i.e. from state n to n+ 1. As shown in Ostwald et al. (2010), it is possible to obtain an explicit
A-stable update using

n+1ξ = nξ +
1
2
Δt
[
n+1ξ̇ + nQ · nξ

]
, (34)

wherein

n+1ξ̇
def=
[
I − 1

2
Δt nQ

]−1

· nQ ·
[
1
2
Δt nQ · nξ + nξ

]
. (35)

Using this approach facilitates to solve the presented system with high efficiency, while the numerical stability is
significantly improved compared to other explicit integration schemes such as forward-Euler. After the updated
volume fractions are computed, the intermediate plastic strains nε̃αpl and nε̃βpl solely resulting from the phase-
transformation can be obtained from (27) and (29) as described in Section 2.3.

Besides that, the time-integration of the differential equations governing the evolution of plastic strain in each
phase is carried out using a backward-Euler time integration scheme (compare, e.g., Simo and Hughes (1998)).
The discrete update of the plastic strains from timestep nt to n+1t according to (15) yields

n+1εαpl = nε̃αpl + n+1λα sgn
(
n+1qαpl,Ψ − n+1ξαbα

)
, (36)

with n+1εαpl = ε̂αpl(t = n+1t) the updated plastic strains, nε̃αpl the current intermediate plastic strain resulting from
phase-transformation, n+1λα = Δt λ̇α ∈ R

+ the current Langrangian multiplier, and sgn(n+1qαpl,Ψ − n+1ξαbα)
the sign of the plastic driving force—being reduced by the back stress n+1ξαbα—assigned to phase α at time
t = n+1t.
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In the current context, the Lagrangian multiplier can be expressed in terms of the trial value of the yield
function Φαtri = Φ̂α(qαpl,Ψ,tri,

nY α), with the trial plastic driving force qαpl,Ψ,tri and nY α = Ŷ α(nγα) the yield stress
of phase α at time t = nt. For the derivation of the trial plastic driving force, we make use of the intermediate
state potential Ψ̃ def= Ψ̂(n+1ε, nε̃1d

pl , θ,
n+1ξ), where the updated volume fractions n+1ξ obtained from the phase-

transformation algorithm, (34) and (35), are considered. Thus, the trial plastic driving force for phase α results
in

qαpl,Ψ,tri = −∂Ψ̂(n+1ε, nε1d
pl , θ,

n+1ξ)
∂ nεαpl

∣∣∣∣∣
θ

= − ∂

∂ nεαpl

∣∣∣∣∣
θ

∑
α

n+1ξαψ̂α(n+1ε, nεαpl, θ)

= −n+1ξα
∂ψ̂α(n+1ε, nεαpl, θ)

∂ nεαpl

∣∣∣∣∣
θ

. (37)

Based on this, the trial value Φαtri of the yield function can be evaluated, facilitating to express the Lagrangian
multiplier as

n+1λα =
Φαtri

n+1ξα [Eα +Hα]
. (38)

The plastic strains εαpl in each phase α can then be updated from time nt to n+1t in an explicit manner according
to (36), while the accumulated plastic strains n+1γα are obtained from

n+1γα = nγ̃α + n+1λα . (39)

Here, the consistency of history variables is accounted for by considering the intermediate accumulated plastic
strains

nγ̃α = ̂̃γα(nγα, nε̃αpl,
nεαpl)

def= nγα + |nε̃αpl − nεαpl| . (40)

Moreover, note that the change of plastic strains due to inheritance can be expressed in terms of

Δεαpl,inh
def= ε̃αpl − εαpl . (41)

A flowchart visualizing the actual algorithmical implementation is provided in Appendix A in terms of a Nassi-
Shneiderman diagramme.

4. Numerical Examples

This section provides several numerical examples for the model presented in Section 2, where we consider
homogeneous deformation states at constant temperature using a quasi-static strain rate of ε̇ = 10−4 s−1. In Sec-
tion 4.1 we show the behaviour of the phase-transformation model without consideration of plasticity, illustrating
that the implemented phase transformation model works correctly.

Then, in Section 4.2 the interactions between phase-transformations and plasticity are evaluated. In partic-
ular, two numerical examples are adressed, highlighting the influence of concave and convex plastic inheritance
functions. For these examples we restrict ourselves to the tensile regime in stress space, since we in this work
only consider a martensitic tension phase for simplicity.

In Section 4.3 we investigate the behaviour of the phase-transformation-plasticity model when applied to
material parameters corresponding to TRIP steel (see Table 2). Note that TRIP (transformation induced plas-
ticity) steel particularly involves higher martensitic transformation strains. Here, we once more focus on the
tensile regime, where the results are restricted to non-negative stresses as in the case of shape memory alloys.

4.1. Shape memory alloys: phase-transformations without plasticity
Figure 4 displays the stress-strain response of SMA at different temperatures. In order to show that the

model properly describes the temperature-dependent pseudo-elastic response of SMA, we compute the stress-
strain response at θ = 263 K, Figure 4 (a), and θ = 323 K, Figure 4 (b), using parameters as suggested in
Govindjee and Hall (2000) and a maximum strain of εmax = 0.08.
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Figure 4: Phase-transformations without plasticity in SMA: pseudo-plastic response as observed at
low temperatures, θ = 263 K (a) and pseudo-elastic response as observed at high temperatures,
θ = 323 K (b), cf. Govindjee and Hall (2000).

4.2. Shape memory alloys: phase-transformations with plasticity
In contrast to the non-plastic response provided in Section 4.1, we now make use of the material parameters

provided in Table 1. In particular, we now investigate the behaviour of the model at a constant temperature of
θ = 283 K. As initial conditions, we assume the material to consist of pure austenite, i.e. 0ξ = [ ξA|0, ξM|0 ]t =
[ 1, 0 ]t. The material is then loaded by applying a strain of ε̂(t) = τ̂ (t) εmax, where τ̂ (t) ⊂ R is a time-scaling
function and εmax = 0.05 is the maximum applied strain.

Figure 5 shows the results obtained for a concave inheritance probability function, where we restrict ourselves
to the tensile regime, i.e. σ > 0. As a tensile load is applied, martensite starts to evolve (see Figure 5(b)), while
both material phases initially behave elastically (εApl = εMpl = 0 as ε < 0.0175, compare Figure 5(c)). At
ε ≈ 0.0175, plastic flow in the austenitic phase is initiated, and at ε ≈ 0.0225 also martensite starts to deform
plastically, such that εApl > εMpl (Figure 5(c)). The simultaneous plastic flow of both material phases can also
be seen in the stress-strain diagramme (Figure 5(a)) showing a linear proportional hardening behaviour for
ε ∈ [ 0.0225, 0.05 ].

As austenite possesses a higher plastic strain than martensite during the first tensile load cycle (εApl > εMpl for
ε ∈ [ 0.0225, 0.05 ], compare Figure 5(c)), the evolving martensitic phase (Figure 5(b)) inherits additional plastic
strains present in the austenitic phase. However, the change of plastic strains due to inheritance is very small as
long as the change of plastic strains is mainly governed by the plastic evolution law (15), see Figure 5(d).

As the maximum strain of ε = 0.05 is reached, the load reverses. At this point also the phase-transformations
start to revert. As shown in Figure 5(b), the volume fraction of martensite starts to decrease, while the austenitic
phase is now evolving. Furthermore, the evolution of plasticity stops—the change of plastic strains is now solely
driven by inheritance resulting from the evolution of the austenitic phase, see Figure 5(b). Due to the concave
inheritance function applied, a part of the plastic strains is pushed to the martensitic phase, while the other part
is inherited by austenite. Physically speaking, the dislocations pushed by the phase front lead to an increased
plastic distortion of the martensitic phase such that the martensitic plastic strains increase (compare Figure 5(c)).
On the other hand, at ε = 0.05 the martensitic plastic strains are smaller than those in austenite. Thus the
inheritance initially leads to a decrease of plastic strains in austenite. As the martensitic plastic strains increase
further, at ε ≈ 0.03 also the austenitic plastic strains start to increase again. Then, at ε ≈ 0.0225, the stress
reaches σ = 0 (see Figure 5(a)) and the load cycle is completed.
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Figure 5: Phase-transformations in SMA: stress-strain diagramme (a), evolution of volume fractions
(b), evolution of plastic strains (c) and change of plastic strains due to inheritance (d) resulting from
the evolution of phases obtained by applying a maximum tension of εmax = 0.05. Note that concave
inheritance probability functions ΠA→M = Π̂A→M

ccv (ξA, εApl;κ = 0.05, εApl,sat = 0.1) and ΠM→A =
Π̂M→A

ccv (ξM, εMpl ;κ = 0.05, εMpl,sat = 0.1) are chosen here (see Figure 3). The calculations are done at
constant temperature of θ = 283 K.
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Figure 6: Phase-transformations in SMA: stress-strain diagramme (a), evolution of volume fractions
(b), evolution of plastic strains (c) and change of plastic strains due to inheritance (d) resulting from
the evolution of phases obtained by applying a maximum tension of εmax = 0.05. Note that convex
inheritance probability functions ΠA→M = Π̂A→M

cvx (ξA, εApl;κ = 0.1) andΠM→A = Π̂M→A
cvx (ξM, εMpl ;κ =

0.1) are chosen here (see Figure 2). The calculations are done at constant temperature of θ = 283 K.
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Assuming a convex inheritance probability function means that dislocations are rather pushed than inherited
by trend (compare Figures 2 and 3). Figure 6 provides the results obtained for SMA using a convex inheritance
probability function. Comparison of Figures 6(c) and 5(c) shows that the convex inheritance function leads to
a slightly stronger increase of plastic strains in martensite, with at the same time stronger decrease of plastic
strains in austenite. This corresponds to the assumption, that—by trend—the convex inheritance function rather
pushes dislocations to the decreasing phase, while less dislocations remain for inheritance by the increasing phase.
Comparison of Figures 6(a) and 5(a) and Figures 6(b) and 5(b), respectively, shows that the plastic inheritance
function has an influence also on the macroscopic response of the material. Not only the zero stress state is
reached at different strains, but also the evolution of phases differs. To be specific, after reverting the load
austenite is much more likely to evolve assuming concave inheritance, while for convex inheritance the austenitic
volume fraction evolves with less intensity (compare Figures 5(b) and 6(b)).

4.3. TRIP steel: phase-transformations with plasticity
Apart from SMA, we also investigate the behaviour of the material model when material constants as provided

in Table 2 are applied. These are adapted to what is known for TRIP steels. As initial conditions, we once more
assume the material to consist of pure austenite, i.e. 0ξ = [ ξA|0, ξM|0 ]t = [ 1, 0 ]t. Furthermore, we restrict
ourselves to the tensile regime and non-negative stresses in the following. The calculation is done at a constant
temperature of θ = 283 K.

Figure 7 shows the results obtained for a concave inheritance probability function. Initially, the material
behaves purely elastic, as neither phase-transformations occur nor plastic strains evolve, see Figures 7(b) and (c),
respectively. Then, at a strain of ε ≈ 0.005, austenite starts to deform plastically, Figure 7(c). A further increase
of the applied strain leads to an evolution of the martensitic tensile phase, Figure 7(b), while both phases and
thus the overall macroscopic material is undergoing plastic flow as observed in experiments. As the load reverses,
the volume fractions as well as the plastic strains remain constant, resulting in a purely elastic deformation back
to the unloaded state at which external forces vanish identically, i.e. σ = 0. This result coincides with the
experimentally-observed fact that TRIP steels do not show the pseudo-elastic hysteresis behaviour as in the case
of SMA. Comparison of Figures 5(b) and 5(c) and 7(b) and 7(c), respectively, shows that for shape memory
alloys the material transforms first and then yields, while when applied to TRIP steel the model predicts that
the material yields first and then starts to transform.

5. Summary

The main goal of this work is to develop a coupled model for the interaction of phase-transformations and
plasticity. As a basis, we make use of a one-dimensional micromechanically motivated potential-based phase-
transformation model. Based on this model, we extend the Helmholtz free energy function of the material in
order to account for the influence of evolving plastic strains. Furthermore, we use a von-Mises type plasticity
model in terms of the driving forces for each phase as related to the overall potential. For the plasticity model,
we consider linear proportional hardening, facilitating to transpose the backward-Euler based evolution law in
such way, that explicit updates of the plastic strains as well as plastic history variables are enabled in each load
step. Together with the A-stable explicit update of the volume fractions, the overall model turns out to be
numerically efficient.

The influence of the inheritance probability function is discussed in detail for SMA, where it is shown, that the
type of inheritance law has an influence not only on the macroscopic stress response, but also on the evolution of
volume fractions. Besides the application to SMA, we also apply the model to TRIP steel material parameters.
In case of TRIP steel, the correlation between simulated stress-strain response and experimentally observed
stress-strain behaviour shows a good agreement, where in particular the ongoing hardening up to large strains
is represented by the model, see e.g. Choi et al. (2009). It turns out that for SMA the material first transforms
and then yields, while for TRIP the material first yields and then starts to transform. Although the underlying
phase-transformation model was originally established for SMA, see Govindjee and Hall (2000), the application
of the coupled phase-transformation plasticity model to TRIP steel gives promising results in view of future
enhancements of the model.
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Figure 7: Model based on TRIP steel material parameters: stress-strain diagramme (a), evolution of
volume fractions (b), evolution of plastic strains (c) and change of plastic strains due to inheritance
(d) resulting from the evolution of phases obtained by applying a maximum tension of εmax = 0.05.
Note that concave inheritance probability functions ΠA→M = Π̂A→M

ccv (ξM, εMpl ;κ = 0.05, εMpl,sat = 0.1)
and ΠM→A = Π̂M→A

ccv (ξA, εApl;κ = 0.05, εApl,sat = 0.1) are chosen here (see Figure 3). The calculations
are done at constant temperature of θ = 283 K.
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For future work, the correlation between simulation and experiment is expected to become more exact by
additionally taking into account thermo-mechanical coupling effects occurring during phase-transformations.
Furthermore, the consideration of a martensitic compression phase, as discussed in Ostwald et al. (2010), is also
expected to increase the accurracy of the simulation results and facilitates to take into account the compression
regime in addition. Also an extension of the model to the three-dimensional case, e.g. by means of a micro-sphere
approach, will contribute to a smoothening of the macroscopic material response.

As elaborated in Section 4, the chosen inheritance law has a severe influence on the macroscopic material
response. To this end, it is necessary to carry out detailed micro-mechanical experiments that reveal the complex
interactions between evolving phase fronts and moving dislocations, eventually giving insight to the physical
inheritance probability law depending on the volume fractions and dislocation densities as well as—in general—
also on the temperatures of the involved phases.
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A Algorithmic flowchart

Numerical scheme — coupling of phase-transformations and plasticity

while t < tmax do

set t = n+1t = nt+ Δt ∈ [ 0, tmax ]

given: nξ =
[
nξA, nξM

]t
, nε1d

pl =
[
nεApl,

nεMpl

]t
, nγ =

[
nγA, nγM

]t
, n+1ε

obtain n+1ξ from (34) and (35).

�
�

��true
check whether ΔξM = n+1ξM − nξM > 0

�
�

��

false

define increasing phase α def= M and decreasing
phase β def= A

define increasing phase α def= A and decreasing
phase β def= M

compute plastic inheritance probability Πβ→α = Π̂β→α(n+1ξβ , nεβpl; ...)

compute intermediate plastic strains nε̃αpl = ̂̃εαpl(
nξα,Δξα, nεαpl,

nεβpl, Π
β→α) and

nε̃βpl = ̂̃ε βpl(
nξβ ,Δξα, nεβpl, Π

β→α) solely resulting from the change of volume fractions according to (27)
and (29)

compute changes of plastic strains—Δεαpl,inh and Δεβpl,inh—according to (41)

compute consistent intermediate history variables nγ̃α = ̂̃γα(nγα, nε̃αpl,
nεαpl) and nγ̃β = ̂̃γβ(nγβ , nε̃βpl,

nεβpl)
according to (40)

evaluate intermediate state potential Ψ̃ def= Ψ̂(n+1ε, nε̃1d
pl , θ,

n+1ξ)

compute trial plastic driving forces qαpl,Ψ,tri and qβpl,Ψ,tri and Lagrangian multipliers n+1λα and n+1λβ

according to (37) and (38), respectively

compute final updates for plastic strains and accumulated plastic strains according to (36) and (39)

compute stress response n+1σ =
∂Ψ̂(n+1ε, n+1ε1d

pl , θ,
n+1ξ)

∂ n+1ε

∣∣∣∣∣
θ,n+1ε1d

pl

return n+1ξ, n+1ε1d
pl ,

n+1γ, n+1σ and set n← n+ 1
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B Material parameters

Table 1: SMA material parameters considered in Section 4.2 (compare, e.g., Govindjee and Hall (2000); Bhat-
tacharya (2003)).

material parameter symbol value

austenite A (parent phase): Young’s modulus EA 67 GPa

hardening modulus HA EA/6

initial yield stress Y A
0 1200 MPa

transformation strain εAtr 0

latent heat λA
T 0

martensite M: Young’s modulus EM 26.3 GPa

hardening modulus HM EM/3

initial yield stress Y M
0 600 MPa

transformation strain εMtr 0.025

latent heat λM
T 14500 J/kg

common parameters: coefficient of thermal expansion ζ 12× 10−7 K−1

reference temperature θ0 273 K

heat capacity cp 400 J/kgK

transition attempt frequency ω 1.6 s−1

transformation region’s volume Δv 2.71× 10−18 mm3

Boltzmann’s constant k 1.381× 10−23 J/K

Table 2: Specific TRIP steel material parameters considered (compare Lambers et al. (2009)).

material parameter symbol value

austenite A (parent phase): Young’s modulus EA 160 GPa

hardening modulus HA EA/4

initial yield stress Y A
0 800 MPa

transformation strain εAtr 0

martensite M: Young’s modulus EM 160 GPa

hardening modulus HM EM/12

initial yield stress Y M
0 1200 MPa

transformation strain εMtr 0.04

common parameters: transition attempt frequency ω 16 s−1



Ostwald et al. / A model for the interaction of phase-transformations and plasticity 81

References

Abeyaratne, R., Kim, S. and Knowles, J. (1994). A one-dimensional continuum model for shape-memory alloys,
Int. J. Sol. Struct. 31, pp. 2229–2249.

Abeyaratne, R. and Knowles, J. (1990). On the driving traction acting on a surface of strain discontinuity in a
continuum, J. Mech. Phys. Sol. 38, pp. 345–360.

Abeyaratne, R. and Knowles, J. (1993). A continuum model of a thermoelastic solid capable of undergoing phase
transitions, J. Mech. Phys. Sol. 41, pp. 541–571.

Abeyaratne, R. and Knowles, J. (1997). On the kinetics of an austenite → martensite phase transformation
induced by impact in a Cu-Al-Ni shape-memory alloy, Acta Mater. 45, pp. 1671–1683.

Achenbach, M. (1989). A model for an alloy with shape memory, Int. J. Plast. 5, pp. 371–395.
Auricchio, F. and Taylor, R. (1997). Shape-memory alloys: modelling and numerical simulations of the finite-

strain superelastic behavior, Comp. Meth. Appl. Mech. Engrg. 143, pp. 175–194.
Bain, E. C. (1924). The nature of martensite, Trans. AIME 70, p. 25.
Ball, J. (1977). Convexitiy conditions and existence theorems in nonlinear elasticity, Arch. Rat. Mech. Anal. 63,

pp. 337–403.
Bartel, T. and Hackl, K. (2009). A micromechanical model for martensitic phase-transformations in

shape-memory alloys based on energy-relaxation, Z. Angew. Math. Mech. 89 (10), pp. 792–809, DOI:
10.1002/zamm.200900244.

Berezovski, A. and Maugin, G. (2007). Moving singularities in thermoelastic solids, Int. J. Fract. 147, pp.
191–198.

Bhattacharya, K. (2003). Microstructure of Martensite - Why it forms and how it gives rise to the shape-memory
effect (Oxford University Press, New York).

Bowles, J. and MacKenzie, J. (1954). The crystallography of martensite transformations I and II, Acta Metall.
2, pp. 129–137.

Cherkaoui, M., Sun, Q. and Song, G. (2000). Micromechanics modeling of composite with ductile matrix and
shape memory alloy reinforcement, Int. J. Sol. Struct. 37, pp. 1577–1594.

Choi, K., Liu, W., Sun, X. and Khaleel, M. (2009). Microstructure-based constitutive modeling of TRIP steel:
Prediction of ductility and failure modes under different loading conditions, Acta Mater. 57, pp. 2592–2604,
DOI: 10.1016/j.actamat.2009.02.020.

Dacorogna, B. (1989). Direct Methods in the Calculus of Variations (Springer, Berlin).
DeSimone, A. and Dolzmann, G. (1999). Material instabilities in nematic polymers, Physica D 136, pp. 175–191.
Govindjee, S. and Hall, G. (2000). A computational model for shape memory alloys, Int. J. Sol. Struct. 37, pp.

735–760.
Helm, D. and Haupt, P. (2003). Shape memory behaviour: modelling within continuum mechanics, Int. J. Sol.

Struct. 40, pp. 827–849.
Huo, Y. and Müller, I. (1993). Nonequilibrium thermodynamics of pseudoelasticity, Cont. Mech. Thermodyn. 5,

pp. 163–204.
James, R. and Hane, K. (2000). Martensitic transformations and shape memory materials, Acta Mater. 48, pp.

197–222.
Kohn, R. (1991). The relaxation of a double-well energy, Cont. Mech. Thermodyn. 3, pp. 193–236.
Lambers, H.-G., Tschumak, S., Maier, H.-J. and Canadinc, D. (2009). Tensile properties of 51crv4 steel in

martensitic, bainitic and austenitic state, Hot Sheet Metal Forming of High-Performance Steel 2, pp. 73–82.
Maugin, G. and Berezovski, A. (2009). On the propagation of singular surfaces in thermoelasticity, J. Therm.

Stresses 32, pp. 557–592.
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