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Abstract

A method is given for creating material with a desired refraction coefficient. The method consists of embedding
into a material with known refraction coefficient many small particles of size a, ka � 1, where k > 0 is the
wave number. The number of particles per unit volume around any point is prescribed, the distance between
neighboring particles is O(a

2−κ
3 ) as a → 0, 0 < κ < 1 is a fixed parameter. The total number of the embedded

particle is O(aκ−2). The physical properties of the particles are described by the boundary impedance ζm of the
m− th particle, ζm = O(a−κ) as a → 0. The refraction coefficient is the coefficient n2(x) in the wave equation
[∇2 +k2n2(x)]u = 0. Technological problems, which should be dealt with before the method can be implemented
practically, are formulated and discussed. The desired refraction coefficient can be complex-valued. This means
that the enrgy absorption in the new material can also be designed as one wishes.
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1. Introduction

The problem we are concerned with is the following:
How does one create in a given bounded domain D ⊂ R

3 a material with a desired refraction coefficient
n2(x)? What are the technological problems to be solved in order to implement practically our recipe for creating
materials with a desired refraction coefficient?

Initially the domain D is assumed to be filled in with a material with a known refraction coefficient n2
0(x).

It is assumed that Im n2
0(x) ≥ 0 and n2

0(x) = 1 in D′ := R
3 \D. The wave equation in this material is:

L0u0 := [∇2 + k2n2
0(x)]u0 = 0 in R

3, k = const > 0, (1)

u0 = eikα·x + v0, α ∈ S2, (2)

v0 = A0(β, α, k)
eikr

r
+ o

(
1
r

)
, r = |x| → ∞, β :=

x

r
. (3)

The function v0 is the scattered field, A0(β, α, k) is the scattering amplitude, u(x, α, k) is the scattering solution,
S2 is the unit sphere in R

3.
We embed M small particles Dm, Sm := ∂Dm, 1 ≤ m ≤M , into D, so that in any subdomain Δ ⊂ D there are

N (Δ) =
1

a2−κ

∫
Δ

N(x)dx[1 + o(1)], a→ 0 (4)
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small particles. Here N(x) ≥ 0 is a continuous (or piecewise-continuous) function which we can choose as we
wish, 0 < κ < 1 is a parameter which is our disposal. For simplicity we assume that particles Dm are balls
centered at the points xm and of radius a independent of m. The embedded particles are small, ka� 1, where
k = 2π

λ , λ is the wavelength in the material in D, k > 0 is the wavenumber.
Our theory can be generalized to the case of small particles of arbitrary shapes (Ramm (2005)). Some results

on numerical modeling of our method are described in papers (Andriychuk and Ramm (2010a), Andriychuk and
Ramm (2010b), and Indratno and Ramm (2010)).

The distance d between neighboring particles is assumed to be

d = O(a
2−κ

3 ) as a→ 0. (5)

This assumption is dictated by the assumption (4). Indeed, the number of particles on a unit length linear
segment is equal to O( 1

d), if the distance between neighboring particles is O(d). Therefore, the number of
particles in a unit cube is O( 1

d3 ), and this number is equal to O( 1
a2−κ ), according to formula (4). Consequently,

d has to be given by formula (5).
The properties of a particle are described by the boundary impedance

ζm =
h(xm)
aκ

, (6)

where h(x) is a continuous function on D, Im h(x) ≤ 0. The function h(x), as N(x), we can choose as we wish.
The scattering solution u(x, α, k) in the presence of the embedded particles solves the problem:

L0u = 0 in R
3 \ ∪M

m=1Dm, (7)

uN = ζmu on Sm, 1 ≤ m ≤M, (8)

u = u0(x, α, k) + v, (9)

v = A1(β, α, k)
eikr

r
+ o

(
1
r

)
, |x| = r → ∞, β :=

x

r
. (10)

Let us now describe our results. We have proved that problem (7)-(10) has a unique solution
u(x, α, k) := uM (x, α, k), (see paper (Ramm (2007a))). We have proved in paper (Ramm (2008b)) that given an
arbitrary bounded function n2(x) such that n2(x) = 1 in D′, n2(x) is continuous or piecewise-continuous in D
(with the set of discontinuities of Lebesgue measure zero in R

3), one can choose N(x) and h(x) so that the limit

ψ := ψ(x, α, k) = lim
M→∞

uM (x, α, k) (11)

exists and satisfies the equation

[∇2 + k2n2(x)]ψ = 0 in R
3, (12)

ψ = u0(x, α, k) + w(x, α, k), (13)

ψ = eikα·x +A(β, α, k)
eikr

r
+ o

(
1
r

)
, r = |x| → ∞, β :=

x

r
. (14)

Therefore the medium with embedded particles in the limit M → ∞, or, which is the same by (4), in the
limit a → 0, has a desired refraction coefficient n2(x). The refraction coefficient n2(x) can be a complex-valued
function, so that the absorption of energy in the limiting material can be designed as we wish. The imaginary
part of the refraction coefficient comes from the imaginary part of the function h(x), defining the boundary
impedances, see in Section 2 Steps 1 and 2 of the recipe for creating material with a desired refraction coefficient.
Our method allows one to create a material with a refraction coefficient which is a tensor, but we do not go into
detail. In recent papers (Ramm (2010b) and Ramm (2010c)) one finds a similar theory for electromagnetic (EM)
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wave scattering by many small particles, and a recipe for creating materials with a desired refraction coefficient
for EM wave scattering.

In practice, one has to stop at some small but finite a > 0 and at the total numberM = M(a) of the embedded
particles. The corresponding refraction coefficient n2

M (x) will approximate the desired refraction coefficient n2(x)
with an error that tends to zero as a→ 0.

In Section 2 we formulate the recipe for choosing N(x) and h(x) which guarantees the existence of the limit
(11), that is, the existence of the limiting function ψ(x, α, k). This function solves problem (12)-(14).

Our theory resembles a homogenization theory (see, e.g., papers (Milton (2001), Marchenko and Khruslov
(2006) and Kozlov, et al. (1994))). However, there are essential differences compared with the usual theories in
these references: a) we do not assume that the small particles are embedded periodically, b) we do not assume
that the operators involved are selfadjoint and have discrete spectrum, c) the estimates for the scattering solution
to problem (7)-(10) differ from the usual estimates in the homogenization theory.

The aims of this paper are:
1) To make clear for a wide audience of engineers and physicists our recipe for creating material with any

desired refraction coefficient,
and
2) To formulate two technological problems which must be solved in order that our theory can be immediately

implemented experimentally.
Theoretical justification of our results are given in papers (Ramm (2007a), Ramm (2007b), Ramm (2008a)

and Ramm (2008b), see also Ramm (2007c), Ramm (2007d) and Ramm (2005) and the papers by the author
mentioned in References. In book (Landau, et al. (1984)), one finds basic physical theory of electromagnetic
wave propagation in an inhomogeneous medium.

2. The recipe for creating material with a desired refraction coefficient

The problem we are interested in is the following:
One is given n2

0(x) and wants to create a refraction coefficient n2(x).
Here is our recipe for doing this.

Step 1. Calculate the function

p(x) := k2[n2
0(x) − n2(x)] := p1(x) + ip2(x), (15)

where p1(x) = Re p(x), p2 = Im p(x).
Step 2. Find two functions N(x) ≥ 0 and h(x) = h1(x) + ih2(x) from the relation

4πh(x)N(x) = p(x). (16)

This can be done by infinitely many ways. For example, one may fix N(x) > 0 and define

h1 =
p1(x)

4πN(x)
, h2 =

p2(x)
4πN(x)

. (17)

If one wishes to deal only with passive materials, then one requires Im n2(x) ≥ 0, Im h(x) ≤ 0, and, if
Im n2

0(x) ≤ Im n2(x),then Im p(x) ≤ 0.

Step 3. Partition the domain D into a union of small cubes Δp, 1 ≤ p ≤ P, without common interior points,
D = ∪P

p=1Δp, the center of Δp is denoted by yp, the side of Δp is of the order O(a
2−κ

6 ). In each cube Δp embed
N (Δp) small particles, where N (Δp) is defined in (4). The distance d between neighboring particles should be
d = O(a

2−κ
3 ). The given order of the smallness of d as a→ 0 is important, but the distance need not be exactly

the same. The boundary impedance of each of the small particle embedded in Δp make equal to h(yp)
aκ , where

h(x) = h1(x) + ih2(x) is the function found in Step 2 of the recipe.
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Theorem 2.1. After the completion of Step 3, the material, obtained from the original one with the refraction
coefficient n2

0(x), will have the refraction coefficient n2
M (x), and limM→∞ n2

M (x) = n2(x).

Proof of this theorem one finds in papers (Ramm (2007a) and Ramm (2008b)). Numerical modeling and
results concerning wave scattering by many small particles can be found in papers Andriychuk and Ramm (2010a),
Andriychuk and Ramm (2010b), and Indratno and Ramm (2010). Generalizations to the case of electromagnetic
(EM) wave scattering by many small particles is given in recent papers Ramm (2010b) and Ramm (2010c).

Example. Let us illustrate our method by a simple example. Suppose that one wants to create a material
with the refraction coefficient n2(x) = 1 + x3 in the region D, described by the inequalities 0 ≤ x3 ≤ 1, 0 ≤
x1, x1 ≤ 1, x = (x1, x2, x3). Assume that n2

0(x) = 1 in D, and k2 = 1. Choose N(x) = 1 in D. Calculate
p(x) = k2[n2

0(x) − n2(x)] = −x3, where we took into account that k2 = 1. Thus, p2(x) = 0, p1(x) = −x3. Use
equation (17) to calculate h(x) and get h(x) = − x3

4π . This completes Steps 1 and 2 of the recipe. By embedding
in the cube D small particles according to Step 3 of the recipe, one gets a material with the desired refraction
coefficient n2(x) = 1 + x3 in the region D.

3. A discussion of the recipe

Step 1 of the recipe is trivial. Step 2 is also trivial. One may choose N(x) > 0 to satisfy some practical
requirements. For example, if one chooses N(x) small, then the total number of particles will be smaller.
Practically one cannot take the limit M → ∞, i.e., in the limit a → 0, and one stops at some finite value of
M , or of a > 0. If one stops at a sufficiently small a, then Theorem 2.1 implies that the resulting medium will
have the refraction coefficient n2

a(x), such that the relative error |n2
M (x)−n2(x)|

n2(x) is arbitrarily small. Experimental
implementation of our theory should show at what size of a one should stop in practice.

The two technological problems, that have to be solved in order that our recipe can be implemented experi-
mentally, are:
1) How does one embed a small particle at a given point into the given material in D?
2) How does one prepare a small particle, a ball of radius a centered at a point xm, with the prescribed boundary
impedance ζm = h(xm)

aκ ?
Here h(x) is the function, found at Step 2 of the recipe.

Possibly, the first technological problem can be solved by the stereolitography process. This process allows
one to create at a precisely desirable location in some materials a small particle of nano-size.

One should be able to solve the second technological problem because its limiting cases ζ = 0 (acoustically
hard particles, particles from insulating material) and ζm = ∞ (acoustically soft particles, perfectly conducting
particles) are easy to solve in practice, so the intermediate values of the boundary impedance should be also
possible to prepare.
A similar theory has been developed in paper Ramm (2008a) for electromagnetic (EM) wave scattering by many
small dielectric and conducting particles embedded in an inhomogeneous medium. In recent papers (Ramm
(2010b) and Ramm (2010c)) one finds a theory for EM wave scattering by many small impedance particles, and
a recipe for creating materials with a desired refraction coefficient and a desired magnetic permeability for EM
wave scattering. A brief summary of the results of this theory is given at the end of this paper.

4. Electromagnetic waves

Assume now that the governing equations are the Maxwell equations

∇× E = iωμH, ∇×H = −iωε′(x)E in R
3, (18)

μ = const, ε′(x) = ε = const in D′, ω > 0 is frequency, ε′(x) = ε(x) + iσ(x)
ω , σ(x) ≥ 0 is the conductivity,

σ(x) = 0 in D′. We assume that ε′(x) ∈ C2(R3), ε′(x) �= 0, is a twice continuously differentiable function. Let
k = ω

c , c = ω
√
εμ is the wave velocity in D′. The incident plane wave is Eeikα·x, α ∈ S2, α · E = 0, E is a

constant vector.



Ramm / Materials with a desired refraction coefficient with embedded particles 21

Under the above assumptions the electrical field E(x) is the unique solution to the equation (see paper (Ramm
(2008a))):

E0(x) = Eeikα·x +
∫

D

g(x, y)p(y)E0(y)dy + ∇x

∫
D

g(x, y)q(y) · E0(y)dy, g(x, y) :=
eik|x−y|

4π|x− y| , (19)

where

p(x) := K2(x) − k2, K2(x) := ω2ε′(x)μ; q(x) :=
∇K2(x)
K2(x)

. (20)

If M small particles Dm, 1 ≤ m ≤M , are embedded in D, then the basic equation (19) becomes

EM (x) = E0(x) +
M∑

m=1

∫
Dm

g(x, y)p(y)EM (y)dy +
M∑

m=1

∇x

∫
Dm

g(x, y)q(y) · EM (y)dy. (21)

It is proved in paper (Ramm (2008a)) that if the size a of small particles tends to zero, if the number of these
particles in any open subset Δ of D is

N (Δ) =
1

a3−κ

∫
Δ

N(x)dx[1 + o(1)], a→ 0, (22)

and if the distance d between neighboring particles is d = O(a
3−κ

3 ), then there exists the limit
limM→0 EM (x) = Ee(x).

The limiting field Ee(x), i.e., the effective field in the medium, solves the equation:

Ee(x) = E0(x) +
∫

D

g(x, y)C(y)Ee(y)dy, C(y) = N(y)c(y), (23)

where

c(y) = lim
a→0

1
a3−κ

∫
|y−x|≤a

p(x)dx. (24)

If, e.g., the small particle Dm is a ball of radius a centered at a point y, and

p(x) =

{
γ(y)
4πaκ

(
1 − |x|

a

)2

, |x| ≤ a;
0, |x| > a,

in the coordinate system with the origin at the point y, and γ(y) is a number we can choose as we wish, then
c(y) in (24) can be easily calculated: c(y) = γ(y)/30. Equation (23) implies:

[∇2 + K2(x)]Ee = 0 in R
3, K2(x) := K2 + C(x), (25)

where C(x) is defined in (23). This equation can be rewritten as

∇×∇× Ee = K2(x)Ee + ∇∇ · Ee. (26)

The term ∇∇ ·Ee plays the role of the current iωμJ .
This term can also be interpreted as the term due to a non-local susceptibility χ: if

De(x) = ε̃(x)Ee − iω

∫
D

χ(x, y)Ee(y)dy,

then the Maxwell’s equations

∇× Ee = iωμHe, ∇×He = −iω ˜ε(x)Ee − iω

∫
D

χ(x, y)Ee(y)dy
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imply

∇×∇× Ee = ω2ε̃(x)μEe(x) + ω2μ

∫
D

χ(x, y)Ee(y)dy.

This equation is of the form (26) if ε̃(x) = K2(x)
ω2μ , and

χ(x, y) = (ω2μ)−1∇x(δ(x− y)∇y),

where δ(x− y) is the delta-function.
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