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Abstract 
 

This paper investigates the elastostatic problem of an annular rigid disc bonded to a finitely deformed incompressible 
elastic halfspace. The analysis is developed within the context of the theory of small deformations superposed on large proposed by 
Green, Rivlin and Shield (1952). The triple integral equations encountered in the formulation of the mixed boundary value problems 
are solved in an approximate fashion in terms of series involving a small non-dimensional parameter that corresponds to the radii 
ratio for the annulus. Explicit results are provided for the torsional stiffness of the annular rigid indenter in terms of the homogeneous 
finite deformation and the constitutive properties of the incompressible rubberlike elastic solid. 
 
Keywords: superposed small deformations, annular indenter, incompressible elastic solid, rubber-like materials, triple integral 
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1. Introduction 

Theories that describe the superposition of small deformations on an initial finite deformation of an elastic 
body have been proposed by a number of researchers including Trefftz (1933), Biot (1939), Neuber (1943) and Green et 
al. (1952). The theory proposed by Green et al. (1952) is recognized for its rigorous basis for accommodating the initial 
finite deformation within the context of modern theories of rubber elasticity (Rivlin, 1960; Spencer, 1970; Ogden, 1984; 
Rajagopal, 1995; Barenblatt and Joseph, 1997; Selvadurai, 2006). Detailed expositions of the general theory of small 
deformations superposed on large can also be found in the texts by Truesdell and Noll (1965), Green and Zerna (1968), 
Green and Adkins (1970) and Eringen and Suhubi (1975).  

This paper uses the theory of small deformations superposed on finite deformations developed by Green et al. 
(1952) to examine the axisymmetric problem arising from the torsional indentation of the surface of an initially finitely 
deformed incompressible elastic halfspace by an annular rigid indenter bonded to the surface. The theory of small 
deformations superposed on large is a useful model for treating hyperelastic materials  that are pre-stressed as opposed 
to continuously undergoing moderately large deformations similar to the theory of second-order elasticity (see e.g. 
Rivlin, 1953; Green and Spratt, 1954; Selvadurai and Spencer, 1972; Selvadurai et al., 1988). The analysis of the three-
part mixed boundary value problems associated with the indentation problems can be formulated by appeal to Hankel 
transform development of the governing equations. This particular approach has been successfully applied in the 
literature to examine a large class of boundary value problems associated with fundamental solutions (Woo and Shields, 
1961), flexible contact problems (Selvadurai, 1977), rigid indenters (Beatty and Usmani, 1975), rubber mounting 
problems (Hill, 1975 a, b; 1976, 1977) and  crack problems (Selvadurai, 1980). Also Demiray (1992) and more recently 
Baek et al.(2007) have applied the theory of small deformation superposed on large to examine biomechanics problems 
related to arteries. In this paper we examine the problem of a incompressible rubber-like elastic half space which is first 
subjected to a finite radial strain and subsequently subjected to a state of axisymmetric torsion by an annular disc that is  
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Figure 1. Torsional indentation of a finitely stretched incompressible elastic halfspace by a bonded annular rigid disc 

 
bonded to the surface (Figure 1). The objective of the study is to examine the influence of both the finite stretch and the 
constitutive properties of the hyperelastic material on the torsional stiffness of the bonded annular disc. The study can 
be used as an experimental procedure for the parameter identification of the constitutive properties governing finite 
deformations of the hyperelastic material.  

 
2. Governing Equations 

The fundamental equations governing small elastic deformations of an incompressible isotropic elastic 
material subjected to an initial finite deformation are given by Green et al. (1952) and the salient results are summarized 
for completeness. We define material points in an isotropic elastic medium by a general curvilinear coordinate system 

1 2 3( ; ; )i r z       , which moves with the body as it deforms. The covariant and contravariant metric 

tensors associated with the undeformed and deformed states are defined by ,ij ijg G and ,ij ijg G , respectively. For 

an isotropic, incompressible elastic material, we can define a contravariant stress tensor ij , measured per unit area of 

the deformed body but referred to i  coordinates of the deformed body, and the hyperelastic constitutive relationship 

governing the material can be written as 
 

 ij ij ij ijg B pG             (1) 

 
where p  is an isotropic stress to be determined by satisfying the boundary conditions and  
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In (3), 1 2( , )W W I I  is the strain energy per unit defined per unit volume and ( 1, 2)nI n   are the 

invariants given by  
 

 1 2 3; ; 1rs rs
rs rs ij ijI g G I g G I G g         (4) 

 
We consider the class of finite deformations, where a halfspace region is subjected to a finite radial stretch  , 

maintaining the surface of the halfspace, 0z  ,  traction free. For this finite deformation and the specified traction 

boundary condition, the stress components ij are given by  
 

 11 2 22 2 2
4

1
( )r   



        
  

       (5) 

 
For the solution of the title problem, we consider a superposed state of infinitesimal deformation which is 

axially symmetric and defined by 
 

 ( , , ) 0 ; ( , , ) ( , ) ; ( , , ) 0r zu r z u r z v r z u r z         (6) 

 
We note that if the infinitesimal displacement vector only has an azimuthal component  and the state of 

deformation is axisymmetric, the displacement field has to correspond to (6) and any non-zero contributions to ru  and 

zu must necessarily be higher-order effects that can be neglected in the context of the superposed small deformations. 

The non-zero components of the incremental stress tensor ( , )ij r z can be obtained in the forms 

 

 11 2 22 33r p                 (7) 

  

 12 23
6 7;

v v vr r
r r z

                
        (8) 

 
where p  is an incremental isotropic stress and  

 

 2 4 2
6 74 4

1 1
( 2 ) ; ( )    

 

 
         
 

    (9) 

 
In (7) and (9) we have retained, for consistency, the notations for the elastic constants introduced  by Green et 

al. (1952). There are no restrictions imposed on the constants 6  and 7 except for the positive definiteness of the 

strain energy function and the material constraint of incompressibility. The formulation is valid for all classes of 

hyperelastic materials where the strain energy function depends only on the principal invariants 1I  and 2I .  

For rotationally symmetric problems where the small deformations are superposed on an initial homogeneous 
finite deformation induced by only a radial stress, and in the absence of body forces , the equations of equilibrium 

governing the superposed stress state ij can be written as 
 

 0
p p
r z
 

 
 
 

                      (10) 
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  
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The formulation of the problem governing the small deformations superposed on large can be completed by 

specifying appropriate displacement and traction boundary conditions. the specification of the displacement boundary 
conditions is straightforward  and the traction boundary conditions corresponding to the superposed stress field are 
given by  

 

 ij ij j
i in n P                         (12) 

 

where in  are the covariant components of the unit normal referred to a surface in the finitely deformed body; in  and 

jP are, respectively, the covariant component of the unit normal and the contravariant component of the surface force 
vector referred to a boundary in the finitely deformed body. 

 
3. Rotationally Symmetric Incremental Deformations 

The equilibrium equations (10) ensure that the incremental isotropic stress can be set to zero without loss of 
generality. For the solution of the non-trivial equation of equilibrium (11), we can employ the Hankel transform 
technique outlined by Sneddon (1944, 1951). The first-order Hankel transform of the function ( )r  is defined by 

  1
1( ) ( );H r                        (13) 

 
where 

 

  1 10
( ); ( ) ( )H r r r J r dr   


                     (14) 

 
and the appropriate Hankel inversion theorem is  

 

 (1)
10

( ) ( ) ( )r J r d     


                        (15) 

 
Operating on (11) with the first-order Hankel transform, we obtain second-order ordinary differential equation 

for 1( )v  , the solution of which, applicable to a half-space region 0 z   , is given by  

 

 1 ( / )( , ) ( ) z kv z A e                        (16) 

 
where ( )A   is an arbitrary function and  

 

 

1/ 2 1/ 22
7

11 2 2
6 ( )

k  
   

     
          

                  (17) 

 
As is evident, the application of the radial stretch induces an apparent structural change in the mechanical 

behaviour of the material, in that the originally isotropic material now displays traits of transversely isotropic behaviour. 
When 1  , the finite deformation vanishes and the formulation reduces to that of the classical elasticity problem that 

exhibits azimuthal deformations with axial symmetry.  
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4. The Torsion of an Annular Rigid Disc Bonded to the Finitely Deformed Halfspace 
The problem of the torsional oscillations of a rigid circular disc bonded to the surface of a halfspace was first 

examined by Reissner and Sagoci (1944) using an oblate spheroidal coordinate formulation, which provides the 
solution to the rigid torsional oscillations of the rigid disc as a special case. The problem was re-formulated by Sneddon 
(1944) who applied the theory of dual integral equations to solve the analogous problem for the rigid disc bonded to the 
surface of a halfspace. The static Reissner-Sagoci problem has been investigated by a number of investigators to include 
finite dimensions of the elastic medium, transverse isotropy of the elastic halfspace and elastic non-homogeneity of the 
shear modulus, which is the single material parameter that influences the torsional response. Detailed accounts of these 
developments can be found in volume by Gladwell (1980) and the articles by Selvadurai (1982, 2007), Selvadurai et al. 
(1986) and Gladwell and Lemczyk (1990). This paper extends the statical Reissner-Sagoci problem to include the 
effects of an axisymmetric finite radial stretch of an incompressible elastic halfspace. It should be noted that the surface 
of the halfspace is initially unconstrained during the application of the finite deformation and the annular rigid disc, 
which is subsequently bonded to the surface, is subjected to the incremental rotation.  

We consider the problem of an annular rigid circular disc of external radius a  and internal radius b  that is 
bonded to the surface of an incompressible elastic halfspace that is subjected to a finite stretch  . The annular rigid 

disc is subjected to an axisymmetric rotation  . The mixed boundary conditions governing the contact problem are  
 

 23( ,0) 0 ; 0r r b                       (18) 

  
 ( ,0) ;v r r b r a                       (19) 

  

 23( ,0) 0 ;r b r                        (20) 

 
The mixed boundary conditions (18) to (20) gives the following set of triple integral equations 

 

  1 ( ); 0 ; 0H A r r b                       (21) 

  

  1
1 ( ); ( ) ;H A r f r b r a                       (22) 

  

  1 ( ); 0 ;H A r a r                        (23) 

 
where ( )f r r  . The solution of triple integral equations of the type (21) to (23) can be approached using a variety 

of computational and approximate analytical schemes. Extensive accounts are given by Tranter (1960), Williams 
(1963), Cooke (1963), Collins (1963), Sneddon (1966) and Jain and Kanwal (1972). Solution of triple integral 
equations resulting from annular inclusion and crack problems are also given by Selvadurai and Singh (1984 a, b ; 
1985), Selvadurai (1994, 1996) and Singh et al. (1995). We follow the procedure outlined by Selvadurai and Singh 
(1984a) and assume that the function ( )A  admits a representation 

 

  1 ( ); ( ) ;H A r g r b r a                       (24) 

 
From the Hankel inversion theorem 

 

 1( ) ( ) ( )
b

a
A r g r J r dr                       (25) 

 
Considering (22) and (25), we have 
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 ( ) ( , ) ( ) ;
b

a
u g u K u r du f r b r a                     (26) 

 
where  

 

 1 10
( , ) ( ) ( )K u r u J r J u d  


                     (27) 

 

We now introduce functions 1( )g u  and 2 ( )g u  such that 

 

 1 2

0 ; 0

( ) ( ) ( );

0 ;

r b
g u g u g r b r a

a r

 
   
   

                   (28) 

 
and assume that ( )f r admits expansions of the form 

 

 1( ) ; 0n
n

n
f r a r r a




                      (29) 

 
1

2 ( ) ;n
n

n
f r a r b r




                        (30) 

 
Using the results (27) to (30), the integral equation (26) can be expressed in the form of two integral equations 

 

 1 10
( ) ( , ) ( ) ; 0u g u K u r du f r r a


                    (31) 

  

 2 20
( ) ( , ) ( ) ;u g u K u r du f r b r


                     (32) 

 
The solution of the integral equations (31) and (32) can be approached in a variety of ways. Here we adopt the 

basic approach proposed by Williams (1963) (see also Selvadurai and Singh (1984a)) where these equations can be 
reduced to the forms 

 

 
12

1
12 2 2 2

( )
4 ( ) ; 0

nnrn
a s

t g tsr ds dt f r r a
r s t s

   
 

                  (33) 

  

 
12

2
202 2 2 2

( )
4 ( ) ;

nn sn
r

t g tsr ds dt f r b r
s r s t


   

 
                  (34) 

 
These integrals can be inverted and expressed as two coupled Fredholm integral equations of the second kind 

for auxiliary functions 1( )T r  and 2( )T r , in the forms 

 
1 2 2

2 2 1
1 1 2 20

( ) [(1/ 2), ; 3 / 2);( / )]!
( ) ( )

( (3 / 2)) ( )

nb
n

u T u F n n u r dunT r l r
r n r u

 
 

   ;   a r          (35) 
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2 21
1 2 1

2 2 2 2

( ) [(1/ 2), ; 3 / 2);( / )]!
( ) ( )

( (3 / 2)) ( )

nn

a
u T u F n n r u dur nT r l r

n u r

  
 

   ;        0 r b           (36) 

 

where 2 1F  is the hypergeometric function and 1( )l r  and 2 ( )l r  are given by  

 

 
12

1
1 0 2 2 2 2

( )2
( )

nnr a
n t

u B u dut dt dl r
dtr r t u t


 

 
                    (37)

  
  

 
12

2
2 2 2 2 2

( )2
( )

nn n t

r b
u B u dur t dt dl r

dtt r t u




 
                   (38)

  

and the functions 1( )B r  and 2 ( )B r  are given by 

 

 
1

1
1 0 2 2

( )1
( ) ; 0

2

nr
n

u f u dudB r r a
drr r u


  


                 (39) 

  

 
1

2
2 2 2

( )
( ) ;

2

nn

r
u f u dur dB r b r

dr u r


    


                 (40) 

 
5. Torsional Stiffness of the Annular Punch  

The coupled integral equations (35) and (36) can be solved using a variety of numerical techniques (see. e.g. 
Delves and Mohamed, 1985; Atkinson, 1997). An alternative is to employ an iterative technique that results in an 
analytical solution to the coupled equations, albeit in an approximate form. The procedure becomes feasible if the form 
of the solution can be developed in a series involving a small non-dimensional parameter. An inspection of the 
governing integral equations reveal that a suitable non-dimensional parameter can be set as the radii ratio of the annulus 

/ ( )b a  . For example for the torsional indentation problem, 1n  ; ( )f r r   ; 1( )f r    and 2( ) 0f r  .  The 

integral equations (35) and (36) can be solved, using an iterative procedure to obtain expressions for 1( )T r  and 2( )T r . 

These can be used to generate the stresses and displacements. In this paper we are primarily interested in developing an 
expression for the torsional stiffness for the bonded annular disc. The torque T  necessary to induce the rotation   is 
given by the result  

  

  23 22
a

b
T r r dr                      (41) 

 
which can be evaluated in the form 

 

 
3 2 5 7 4

9
3 2 2 2

16 ( ) 16 64
1 0( )

3 15 105

aT    
   

       
         

               (42) 

 
where   is the radii ratio. In the special case when the strain energy function for the elastic material  has a  Mooney-
Rivlin form: 1 1 2 2( 3) ( 3)W C I C I    , the result (42) reduces to  
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3 2 5 7 4

91 2
3 2 2 2

32 ( ) 16 64
1 0( )

3 15 105 1

a C CT    
   

    
        

               (43) 

 

where 2 1/C C  . Also in the absence of the initial finite deformation, (i.e. 1  ) and when the indenter is a solid 

circular disc (i.e. 0  ), (43) reduces to the classical Reissner and Sagoci (1944) and Sneddon (1944) result 
 

 
316

3

G aT 
                      (44) 

 
where  1 2( 2( ))G C C   is the linear elastic shear modulus. Since the result for the torsional stiffness has been 

presented in explicit form, the result can be evaluated for ranges of values of   and   of interest. As has been 

observed by Green et al. (1952), Woo and Shield  (1961), Beatty and Usmani (1975) and Selvadurai (1977), instability 
at the surface of a radially compressed incompressible elastic halfspace can occur when 2 / 3  . Accordingly, the 

minimum radial compression should correspond to this limit. Also, the result 0  , corresponds to the neo-Hookean 
elastic material. 
 
6. Concluding Remarks 

The theory of small deformations superposed on large developed by Green et al. (1952) provides a valuable 
approach for examining initial stress effects within the context of hyper elastic materials. The problem examined in this 
paper combines the approaches available in the literature for solving three-part mixed boundary value problems in 
classical elasticity with the theory of small deformations superposed on large to examine the torsional indentation 
problem for the annular indenter. An analytical result has some practical value in that the torsional stiffness can be 
conveniently evaluated using the approximate result where the influence of the annular configuration of the indenter is 
accounted for through a series in terms of a small non-dimensional parameter that represents the radii ratio. 

 
Acknowledgements 

The work described in this paper was supported by a Natural Sciences and  Engineering Research Council of 
Canada, Discovery Grant . The comments made by a reviewer are gratefully acknowledged. 

 
References 
Atkinson, K.E. 1997 The Numerical Solution of Integral Equations of the Second-Kind, Cambridge, Cambridge 

University Press. 
Baek, S., Gleason, R.L., Rajagopal, K.R., and Humphrey, J.D. 2007 Theory of small on large; Potential utility in 

computations of fluid-solid interactions in arteries, Comput. Methods Appl. Mech. Engng, 196, 3070-3078. 
Barenblatt, G.I., Joseph, D.D. (Eds.), 1997 Collected Papers of R.S. Rivlin, Vol. I and II. Berlin, Springer. 
Beatty, M.F., and Usmani, S.A. 1975. On the indentation of a highly elastic halfspace by an axisymmetric rigid punch, 

Quart. J. Mech. Appl. Math., 20, 47-62. 
Biot, M.A. 1939 Non linear theory of elasticity and the linearized case for a body under initial stress, Phil. Mag., Ser 7, 

27, 468-489. 
Collins, W.D. 1963 On the solution of some axisymmetric boundary value problems by means of integral equations. IV. 

Potential problems for a circular annulus, Proc. Edin. Math. Soc., 13, 235-246. 
Cooke, J.C. 1963 Triple integral equations, Quart. J. Mech. Appl. Math., 16, 193-203. 
Delves, L.M., and Mohamed, J.L. 1985 Computational Methods for Integral Equations, Cambridge, Cambridge 

University Press. 
Demiray, H. 1992 Wave propagation through a viscous fluid contained in a prestressed thin elastic tube, Int. J. Engng. 

Sci., 30, 1607-1620. 
Eringen, A.C., and Suhubi, E. 1975 Elastodynamics, Vol. I, San Diego, CA, Academic Press. 
Gladwell, G.M.L. 1980 Contact Problems in the Classical Theory of Elasticity, Dordrecht, Sijthoff and Noordhoff. 
Gladwell, G.M.L., and Lemczyk, T.F. 1990 The static Reissner-Sagoci problem for a finite cylinder: another variation 

of a theme of I.N. Sneddon, Elasticity: Mathematical Methods and Applications (ed. G. Eason and R.W. Ogden) 
pp. 113-123. Chichester, Ellis Horwood. 



 

 
Selvadurai / On the incremental torsional stiffness of an annular disc 

 
9

Green, A.E. and Adkins, J.E., 1970. Large Elastic Deformations, London, Oxford University Press. 
Green, A.E. and Spratt, E.B., 1954. Second-order effects in the deformation of elastic bodies, Proc. Roy. Soc., A 224, 

347-361. 
Green, A.E., and Zerna, W., 1968 Theoretical Elasticity, Oxford, Clarendon Press. 
Green, A.E., Rivlin, R.S., and Shield, R.T. 1952 General theory of small deformations superposed on large elastic 

deformations, Proc. Roy. Soc., A 211, 211-292. 
Hill, J.M. 1975a The effect of pre-compression on the load-deflection relations of long rubber bush mountings, J. Appl. 

Polymer Sci., 19, 747-755.   
Hill, J.M. 1975b Load-deflection relations of bonded pre-compressed spherical rubber bush mountings, Quart. J. Mech.  

Appl. Math., 28, 261-270.  
Hill, J.M. 1976 Closed form solutions for small deformations superimposed upon the simultaneous inflation and 

extension of a cylindrical tube, J. Elasticity, 6, 113-123.  
Hill, J.M. 1977 Radial deflections of thin pre-compressed cylindrical rubber bush mountings, Int. J. Solids Struct., 13, 

93-104. 
Jain, D.L. and Kanwal, R.P. 1972. Three-part boundary value problems in potential and generalized axisymmetric 

potential theories, J. d'Analyse Math., 25, 107-158. 
Neuber, H., 1943 Die grundgleichungen der elastischen Stabilität in allgemeinen Koordinaten and ihre integration, Zeit, 

Angew. Math. Mech. 23, 321–330. 
Ogden, R.W. 1984 Non-Linear Elastic Deformations, Chichester, Ellis-Horwood. 
Rajagopal, K.R.(Ed.) 1995 Recent Advances in Elasticity, Viscoelasticty, and Inelasticity, Singapore, World Scientific 

Publishing. 
Reissner, E., and Sagoci, H.F. 1944 Forced torsional oscillations of an elastic halfspace Int. J. Appl. Phys., 15, 652-654. 
Rivlin, R.S., 1953. The solution of problems in second-order elasticity, J. Rational Mech.  Anal., 2, 53-81. 
Rivlin, R.S., 1960. Some topics in finite elasticity. Structural Mechanics: Proc. First Symposium on Naval Structural 

Mechanics (ed. J.N. Goodier, & N.J. Hoff), pp. 169–198, Oxford, Pergamon Press. 
Selvadurai, A.P.S. 1977 Axisymmetric flexure of an infinite plate resting on a finitely deformed incompressible elastic 

halfspace, Int. J. Solids Struct., 13, 357-365. 
Selvadurai, A.P.S. 1980 The penny-shaped crack problem for a finitely deformed incompressible elastic solid, Int. J. 

Fracture, 14, 327-333. 
Selvadurai, A.P.S. 1982 The statical Reissner-Sagoci problem for an internally loaded transversely isotropic elastic 

halfspace, Int. J. Engng. Sci., 20, 1365-1372. 
Selvadurai, A.P.S. 1994 A unilateral contact problem for a rigid disc inclusion embedded between two dissimilar elastic 

half spaces, Quart. J. Mech. Appl. Math., 47, 493-510. 
Selvadurai, A.P.S. 1996 On the problem of an electrified disc at the central opening of a co-planar sheet, Mech. Res. 

Comm., 23, 621-624. 
Selvadurai, A.P.S. 2006 Deflections of a rubber membrane, J. Mech. Phys. Solids, 54, 1093-1119. 
Selvadurai, A.P.S. 2007 The analytical method in geomechanics, Appl. Mech. Reviews, 60, 87-106. 
Selvadurai, A.P.S. and Spencer, A.J.M. 1972 Second-order elasticity with axial symmetry. I. General theory, Int. J. 

Engng. Sci., 10, 97-114. 
Selvadurai, A.P.S., and Singh, B.M. 1984a Some annular disc inclusion problems in elasticity, Int. J. Solids Struct., 30, 

129-139. 
Selvadurai, A.P.S. and Singh, B.M. 1984b On the expansion of a penny-shaped crack by a rigid circular disc inclusion, 

Int. J. Fracture, 25, 69-77. 
Selvadurai, A.P.S., and Singh, B.M. 1985 The annular crack problem for an isotropic elastic solid, Quart. J. Mech. 

Appl. Math., 38, 233-243. 
Selvadurai, A.P.S., Singh, B.M., and Vrbik, J. 1986 A Reissner-Sagoci problem for a non-homogeneous elastic solid, J. 

Elasticity, 16, 383-391. 
Selvadurai, A.P.S. and Spencer, A.J.M. and Rudgyard, M.A. 1988 Second-order elasticity with axial symmetry. II. 

Spherical cavity and spherical rigid inclusion problems, Int. J. Engng. Sci., 25, 1477-1490. 
Singh, B.M., Danyluk, H.T., Selvadurai, A.P.S., and Vrbik, J. 1995. A note on the torsion of a non-homogeneous solid 

by an annular disc, Int. J. Solids Struct., 32, 2961-2965. 
Sneddon, I.N. 1944 Note on a boundary value problem of Reissner and Sagoci, J. Appl. Phys. 15, 130-132. 
Sneddon, I.N. 1951 Fourier Transforms, New York, McGraw-Hill. 
Sneddon, I.N. 1966 Mixed Boundary Value Problems in Potential Theory, Amsterdam, North-Holland. 
Spencer, A.J.M. 1970 The static theory of finite elasticity. J. Inst. Math. Appl. 6, 164–200. 
Tranter, C.J. 1960 Some triple integral equations, Proc. Glasgow Math. Assoc. 4, 200-203. 



 
 
 
 

  International Journal Of Structural Changes In Solids, 3(2), 2011, 1-10 

 
 
 
 

10 

Trefftz, E. 1933 Zur theorie der stabilität das elastichen gleichgewichts, Zeit. Angew Math. Mech., 13, 160-165. 
Truesdell, C., and Noll, W. 1965 The Non-linear Field Theories of Mechanics, Handbuch der Physik (S. Flugge, Ed.) 

Vil. III/3, Berlin, Springer-Verlag. 
Williams, W.E. 1963 Integral equation formulation of some three-part boundary value problems, Proc. Edin. Math. Soc. 

Ser 2,13, 317-323. 
Woo, T.C., and Shield, R.T. 1961 Fundamental solutions for small deformations superposed on finite biaxial extension 

of an elastic body, Arch. Rat. Mech. Anal., 10, 196-224. 
     
 


