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Abstract 
Characterizing the mechanical properties of anisotropic biological soft tissues poses unique challenges. One among these 

challenges is the lack of a priori information on the underlying fiber orientations that drive its anisotropic behavior. While fiber 
orientations in very thin planar tissues may be characterized by non-destructive means prior to mechanical testing, this is not possible 
with thick tissues. A planar radial extension test of circular planar biological soft tissue specimen is proposed for simultaneously 
ascertaining both the preferred fiber orientations and the mechanical properties. When pulled by a radial load, a circular specimen 
will deform into an elliptical shape revealing its stiffest direction (minor axis of ellipse) and its anisotropic properties. Numerical 
investigations were used to assess the stress and strain fields generated and justify the analytical equations to calculate stress and 
strain. A simple manual force-controlled planar radial extension device was constructed. A porcine aortic specimen was subjected to 
planar radial extension testing and the test data was fit to an anisotropic finite strain constitutive model to demonstrate the feasibility 
of this method for assessment of anisotropic biological soft tissues whose material symmetry is not known a priori. 
 

 
1.Introduction 

Planar biological soft tissues – tissues with a low thickness compared to other dimensions – abound in the 
human body. Blood vessels, skin, intestinal walls, urinary bladder, and heart valves may be thought of as planar 
biological soft tissues. Determining the material properties of these presumably anisotropic tissues can aid in 
understanding and modeling their mechanics in living systems. Traditionally, anisotropic planar tissues are 
mechanically tested by orthogonal biaxial extension of square specimens followed by estimation of parameters of a 
chosen finite elastic constitutive model [1]. Here, assuming the material is comprised of two orthogonal families of 
fibers, the material axes are aligned with the orthogonal test axes for extension testing. Where in-plane shear properties 
are to be characterized, and where the test equipment is appropriately equipped, the material axes may be aligned 
oblique to the test axes resulting in in-plane shear stress and/or strain fields under extension [2]. For these orthogonal 
extension tests to be of value, a priori knowledge of material fiber directions in the specimen to be tested is highly 
desired. Unlike man-made materials, where the material fiber-direction is pre-determined by design, they may be 
unknown in biological materials. Further, ascertaining these fiber orientations by non-mechanical means can be quite 
challenging. Optical methods have been reported for identification of structural fiber orientations in thin biological 
tissues (less than half millimeter) such as heart valve leaflets [1], but rarely in thick tissues such as arteries because 
optical methods are not as effective with thick tissues. Indeed, among reported biaxial orthogonal tests of thick 
biological soft tissues, material axes were understandably presumed to be oriented along test axes [3, 4]. The same 
limitation of having to know material fiber orientations a priori exists in inflation testing of conduit-like structures as 
well, where too, a presumption that the preferred orientation is either circumferential or axial is rendered inevitable [5]. 
In thick planar biological soft tissues, the lack of a priori knowledge of material fiber orientation therefore limits the 
accuracy of results from the traditional orthogonal biaxial extension tests. The limitation is likely aggravated in 
structures that are not necessarily cylindrical (e.g., aortic arch) or those afflicted by pathology (e.g., aortic aneurysms) 
where assumptions on fiber orientations are more questionable. 
We submit that planar radial extension testing (PRET) of a thick circular soft tissue specimen will reveal the underlying 
preferential orientations (if any) of material fibers while also allowing for estimation of finite elastic model parameters 
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obviating the need for a priori knowledge of fiber structure. Nielsen et al. (2002) [6] first reported on such multiaxial 
tests to study inhomogeneous isotropic properties of elastic rubber membranes and later reported using similar test 
methods for characterization of anisotropic skin tissue [7]. Here, we built a simple apparatus for subjecting circular 
planar tissue specimens to radial extension, performed numerical simulations of PRET to assess whether a 
homogeneous strain field may be induced under realistic test conditions, performed a demonstrative test on a planar 
biological soft tissue and estimated its stiffest direction and anisotropic material parameters for a finite elastic 
constitutive model. 
 
2. Methods  
2.1 Concept of planar radial extension testing (PRET) 

The underlying principle of PRET is that material symmetry and mechanical properties of a planar tissue can 
be phenomenologically inferred if it is simultaneously pulled (force-control) or stretched (displacement control) in all 
planar directions (i.e., radially) while measuring the deformation or force field respectively. A force controlled PRET 
involves applying the same force all around the circumference of the circular specimen and studying the deformed 
shape. If the specimen becomes elliptical, then the minor axis of the ellipse is its stiffest direction. This method allows 
direct visual identification of material symmetry, but has precision related challenges because the deviation of specimen 
shape from a circle may only be perceivable at large deformations. The displacement controlled PRET involves 
subjecting the circular specimen to constant displacement around its perimeter such that the circular shape is 
maintained; the material symmetry is inferred by studying the distribution of force around its perimeter that was 
required to maintain the circular shape under deformation. The axis along which the force is highest is the stiffest 
direction. The advantage of this method is its high precision. Even under very small displacements, the material 
symmetry may be inferred, but it does not allow for direct visualization of anisotropy, may have some non-circular 
deformation away from the pins, and requires computer-control for reliable low-scale extensions and accurate 
measurement of forces at the points of extension. 

Theoretically, for true radial extension, the circular specimen will need to be pulled at an infinite number of 
points. But from a practical standpoint, gripping constraints require that the circular specimen be pulled radially at a 
finite number of points. With a ‘sufficient’ number of pull-points for a ‘large enough’ specimen, the stress 
concentrations at the gripping points could subside and result in a region at the center with a homogeneous stress/strain 
field where markers may be placed for strain field measurement.  

Figure 1 illustrates force-controlled PRET of a circular specimen stretched using 16 finite suture points. 

2.2 Numerical investigation of edge-effects on stress and strain fields 
The feasibility of the proposed planar radial extension test rests on precision-related considerations that need to be 
investigated before embarking on building the test apparatus. Specifically, it is vital to examine whether the edge effects 
subside within a short enough distance from the force points and result in a large enough homogeneous strain field for 
placement of markers. Numerical simulation of PRET of a circular specimen with dimensions and material behavior 
reflecting that of a porcine aorta was performed to gain insights into such issues and assess its feasibility. The porcine 
aorta is a 1.5 cm diameter tubular vessel from which a circular 3 cm diameter specimen may be easily obtained (as 
shown in  
Figure 1 A-D). A finite element model of a 3 cm diameter circular specimen was constructed using 1714 triangular 
plane stress elements (CPS3 - ABAQUS, Dassault Systèmes Simulia Corp., Providence, RI). A finite elastic orthotropic 
constitutive model previously reported by Fung and colleagues [8] and widely used for modeling aortic tissue was used 
to characterize material behavior [9]. The Fung model is described by an orthotropic exponential form of strain energy 
density function, 
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where, W is strain energy density; Eij are the Green’s strain tensor components for an orthotropic material with the stiff 
fiber aligned along the ‘1’ direction; c, c1, c2, c3, and c4 are material parameters that are estimated from experiments. For 
the simulation, we chose parameter values from our experiments (discussed subsequently). Nominal parameter values 
were also input for the coefficients associated with normal and shear strains for the 3rd dimension (E33, E13 and E23 
terms) in order to perform the analysis, but the findings should be mostly insensitive to these. 
c = 0.382 N/mm2; c1 = 1.285; c2 =0.889; c3 = 0.378; c4 = 0.362.  
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Figure 1. Conceptual illustration of PRET of a circular anisotropic specimen. (A) When pulled with equal force radially, the specimen will deform to 
an ellipse with the minor axis indicative of its stiffest direction; and (B) when pulled to induce equal displace 

 
The ratio, c1/c2 is a measure of the ratio between stiffness in the 1 direction (stiff fiber) to the stiffness in the 2 

direction (cross-fiber or weak fiber). A radial force of 2.5 N was applied in each of 16 points, 0.3 cm from the periphery 
of the circular specimen precisely as shown in the illustration in Figure 2. The center node of the specimen was 
constrained in all degrees of freedom to suppress rigid body motion without affecting the results. ABAQUS was used 
for performing the analysis. The stiff fiber direction was set as the horizontal direction and the weak fiber direction as 
vertical (Figure 2A). The normal stress and strain along fiber directions were plotted. As expected, the circular 
specimen deformed to a perceptible elliptical shape with its minor axis precisely along the presumed fiber axis direction 
(‘1’ direction because parameter c1>c2) as seen in Figure 2C&D. From the distribution of fiber stress and strain 
components, it is clear that the edge effects that peak at the force points at the radius of 1.2 cm, subside rapidly, 
resulting in a mostly homogenous field within a radius of 0.75 cm – half the radius of the specimen. Figure 2B 
illustrates this by plotting the stress components at all the nodes against their un-deformed radius. This suggests that 
markers need to be placed inside the perimeter of a 0.75 cm radius circle. The FE analysis was repeated with shell 
elements, and a very high level of anisotropy (c1/c2=10) in order to simulate a worst case scenario and here too, a 
homogeneous stress and strain field was found within half the radius of the specimen. This suggests that the size of the 
homogeneous stress and strain field is generally insensitive to the specific material parameters used. 
The results of the numerical investigation are consistent with the notion that edge effects will subside rapidly to result in 
a large enough region of homogenous stress/strain and serves as a proof-of-concept for PRET. 

2.3 Design of a simple PRET apparatus 
A simple manually operated PRET system was built to assess the practicalities and optimize design choices. 

This device, pictured in Figure 3, is capable of a force controlled PRET. This stage-1 device was fabricated using a 40” 
diameter circular block mounted on a table top as the base. A series of 16, 2” diameter pulleys were fixed along the 
periphery of this base, each 22.5o apart (360o/16). Sixteen suture wires with connector pins to grip the specimen at one 
end and plastic containers for holding weights at the other end ran over the pulleys. Individual weight containers – not a 
single loading point – were needed here even if the loading is uniform radial traction because anisotropic specimens 
will deform obliquely causing some weights to drop more than others. If all suture wires were attached to a single 
weight, then some wires will become slack while others remain taut, thus affecting the ability to control load. A tripod 
fixed digital 3 MP camera was used directly above the specimen and whose images are used for measurement of the 
displacement field. 
 

(A) Segment of aorta (B) Cut open aorta (C) Cut circular specimen (D) Circular 
specimen 
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Figure 2. Numerical simulation of PRET of a circular specimen whose stiffest direction is along the horizontal direction (A). It is subjected to radial 
force, F(Rt) of 4N at 16 points around its circumference (t). All images (A, C and D) are to the same scale. Note that the circular specimen deforms 
into an elliptical shape with a minor axis precisely along the a priori stiffest direction. Further, the results show that the edge effects from the pull-
points dissipate within a short distance resulting in a homogeneous stress and strain field (see B, C, and D). The markers may then be placed within 
the homogenous field region of Rt≤0.75cm (see C) – roughly for the first half of the total specimen diameter. 

 

2.4 PRET of a porcine aorta 

 
A freshly harvested porcine thoracic aorta was cut into a circular specimen, 3 cm in diameter using a die ( 
Figure 1 1A-D). The circumferential direction was marked using India ink before cutting. A pin insertion die 

was fabricated using which 16 exactly spaced holes were made in the specimen 2 mm from the edge (along a 2.6 cm 
diameter circle). Further, a circle of 0.75 cm radius was stamped on the specimen, so it may serve as a marker within 
the homogeneous strain region (as dictated by our numerical simulation). The 16 pins at one end of each of 16 suture 
wires were inserted into the specimen and run over the pulley. Figure 3 shows the apparatus at the zero load state 
(ignoring the negligible weight of the plastic container). The specimen was periodically squirted with saline to keep it 
moist during the entire duration of the test. The force at each of the suture points (f) was controlled by gradually placing 
precision machined 1.1 cm, 0.083N metal weights into the containers (see Figure 3). 

To perform the force-controlled PRET, the specimen was subjected to roughly 0.314N (4 metal balls) 
increments of load (f) from 0 to 2.590N in each grip point: f = 0N, 0.628N, 0.942N, 1.256N, 1.57N, 1.884N, 2.197N, 
2.511N and 2.590N. The specimen was periodically squirted with saline during the test procedure. Three investigators 
were involved in gently placing of the metal balls into the containers in order to simultaneously load the specimen and 
minimize asymmetry during the loading process. Further, the lead balls were loaded incrementally to again minimize 
asymmetry of loading during the process. At each increment of load, the specimen was allowed at least 1 minute to 
equilibrate and then a photograph of the deformed specimen was taken using the overhead camera at each load 
increment. The loading was stopped when visible signs of the specimen damage at the suture point became apparent. 
The image data were digitized to extract the x-y coordinates of a finite number of points lying on the perimeter of the 
stamped marker (circular shape at zero load; increasingly elliptical at higher loads). These coordinates were transformed 

to polar coordinates, so that the displacement field may be expressed using the test axes, Rt and t. The minor and major 
axes were identified and an ellipse was fit to determine the major and minor half-dimensions of the ellipse (a and b) for 
each load increment. 
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Figure 3. Photograph of a simple apparatus for force-controlled PRET. Weight containers hanging from stiff wires off of pulleys were loaded with 
lead weights to subject specimen to equi-radial force 

2.5 Constitutive model parameter estimation 

 
We fit the experimental data to the Fung-type exponential strain energy density function (Equation 1) without 

the E12 term as this is negligible in our experiment. Thus, 
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c and ci are material parameters with 1 referring to the stiffest direction. The displacement field is, 
x1 = 1X1;  x2=2X2;  x3=[1/(12)]X3 
where the stretch ratio across thickness (3) is determined by assumption of incompressibility. When a and b are major 
and minor half-dimensions of ellipse, R is the radius of the marked circle (reference configuration), the relevant stretch 
ratios and Green strains are 
                                               1 = a/R; 2 = b/R; E11 = ½(1

2-1); E22 = ½(2
2-1)                                            (3) 

Cauchy stresses at the homogeneous strain region of the specimen will be the traction at the boundary.  

                                                                             H
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Where 16 is total number of pull-points, f is force at each pull-point, H=1.5mm is the thickness of sample, and L is 
length of ellipse in current configuration calculated by Ramanujan's approximation: 

                                             

))(310)(3( 22 baabbaL                      
                                           (5) 

The normal Cauchy stresses along fiber directions are: 

                                                                         
Q

113222
2
222

Q
223111

2
111

e)EE(λσ

e)EE(λσ

ccc

ccc



                                             (6) 

where, ii, Eii, i, and Q are determinable using Equations (2), (3), (4) and (5) from the experimentally measured f, a, b, 
and H. 

The major and minor half-dimensions of the near-ellipse marker on the specimen, a and b, were determined for 
each load by fitting the digitized marker to an ellipse equation using the nonlinear regression Levenberg-Marquardt 
least squares algorithm (Igor Pro, Wavemetrics). Subsequently, the Levenberg-Marquardt leastsquares algorithm was 
also used to fit Equation 6 to the experimentally obtained f-a,b data to estimate the material parameters, c, c1, c2 and c3 
while constraining the parameters in the following manner to ensure convexity of the strain energy function [10]: 
c>0, c1>0, c2>0, c1c2>c3

2  
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Figure 4. Results from PRET of aortic specimen to identify the preferred fiber direction. The images show how stamped circle on the specimen at f=0 
N load deformed into an ellipse at f=2.59 N (images on same scale). The marking was digitized, converted to polar coordinates and the radius (Rt) of 
discrete points around the circumference was plotted as a function of circumferential location (t). Note that at f=0 N, radius (Rt) is roughly constant 
around the circumference (t) indicative of a circle while at f=2.59N, there are clear minimas and maximas indicative of the minor and major axes of 
the ellipse relative to in vivo axes,  and . The stiffest direction and therefore preferred fiber direction corresponds closer to axial direction,  (about 
20 degrees from it) in this specimen. 

 
3. Results 

PRET of the aortic specimen showed a perceptible change in shape of the stamped marker from a circle at zero 
load to an ellipse under high loads. The specimen ‘failed’ (showed visual signs of tear at the pull points) beyond 2.59N. 
Figure 4 shows the specimen at the reference state and at the maximum load. Under visual observation and by analysis 
of images, it was clear that the circular specimen deformed into an ellipse with the major axis 20 deg. from 
circumferential direction () and the minor axis 20 degrees from the axial direction () as seen in . Consequently, it is 
fair to infer that the preferred fiber orientation is 20 degrees to the axial direction. Figure 5 shows the digitized 
deformation of the circular marker for all loads as a plot of Rt versus t, the test axes. For a circle, the radius (Rt) will 
remain unchanged with angle (t), but for an ellipse, there will be a clear maxima and a minima for radius with angle. 
The gradual change of the circle to an ellipse is apparent in this figure. Additionally, since the aorta is a biological soft 
tissue, one would expect a large change in the amount of deformation at low loads (greater compliance) and less 
deformation at high loads (greater stiffness). This, too, is apparent in this graph where the largest change in average 
radius occurs between f=0N and f=0.628N – i.e., at the first increment of load. Fitting of ellipses to these shapes 
allowed for determination of the major and minor half-axes for each load, f (see Figure 6).  The nonlinear regression of 
data shown in Figure 6 to Equation (5) converged to a good fit resulting in estimations of the material parameter values 
of the Fung-type constitutive model:  c = 0.382 N/mm2, c1 = 1.285, c2 =0.889, c3 = 0.378. 

 
4. Discussion 

Biological soft tissues present unique challenges during characterization of their mechanical properties unlike 
man-made synthetic constructs. Among them is the challenge of ascertaining the unknown material symmetry. Tissues 
that present with pathologies further aggravate this limitation as it makes assumptions on material symmetry more 
questionable. Unlike in the case of traditional orthogonal biaxial extension tests, a mechanical test method that does not 
impose the need to have a priori knowledge of underlying fiber structure can be quite valuable. We report precisely 
such a method here. In a series of remarkable reports on what they termed multiaxial tests, Nielsen and colleagues [6, 7, 
11] have already reported on planar radial extension tests of rubber and skin tissue using a sophisticated computer 
controlled apparatus with 16 pull points. They studied heterogeneous isotropic and anisotropic tissues while estimating 
the material parameters using a reverse-FE optimization procedure. 

In this proof-of-concept report, we demonstrate an experimental and analysis method for simultaneously 
estimating the material symmetry and mechanical properties of planar biological soft tissues. There are similarities with 
their method  such  as  the number of pull points, etc.  However, the method  we  report  here is  different  from  their  
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Figure 5. Test results demonstrating the evolving elliptical shape (maxima and minima of Rt) of the stamped marker from a circular shape (flat Rt) 
with increasing load. Note also the large change in average radius at low loads (between f=0N to f=0.628N) and the low change at high loads 
indicative of the nonlinear stiffening characteristic of biological soft tissues. 

 
 
 
 
 

 
Figure 6. Major and minor axes of ellipse with increasing load 
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Figure 7. Fung-model curve fit to experimental data for estimation of parameters 

 

approach in a few ways. The merits of this approach are that we use a simple and easily constructed test apparatus and 
do away with the need for reverse-FE based optimization by demonstrating that a homogeneous soft tissue will indeed  
have a large enough region of homogeneous stress and strain field that will permit direct estimation of material 
parameters using straightforward nonlinear regression. Reverse-FE based optimization can become problematic when 
multiple parameters are to be optimized and this limitation is avoided. But the current proposed approach is not without 
limitations. If the specimen is heterogeneous, the method of estimation we report here is likely not viable and a Nielsen 
type reverse-FE based approach does become inevitable, despite its limitations in terms of accuracy in estimations. The 
same is the case for small specimens where the edge effects may not subside to create a measurably large enough 
homogeneous strain field around the center of the specimen. Transmural variations in fiber orientations (if any) will 
likely not be captured using a PRET-based measurement. The current manual apparatus has some specific limitations 
such as the difficulties in preconditioning the specimen and the inability to perform creep/relaxation type testing. But 
these limitations are likely addressed by a computer-control PRET apparatus. 

In the case of the aortic specimen we tested, we found that that the stiffest direction was neither 
circumferential nor longitudinal. There are conflicting findings on which among circumferential and axial directions are 
typically stiffer from biaxial studies with some suggesting circumferential [12] while others longitudinal [13]. Likely 
these differences depend on species and location, but nevertheless underscore the uncertainty surrounding material 
symmetry. This experiment is exploratory in nature and therefore more investigations may be needed to confirm the 
findings. But the current report does demonstrate the proof-of-concept underlying the planar radial extension test 
protocol and the feasibility of extracting the nature of anisotropy and the material parameters of a biological soft tissue 
whose material symmetry is not known a priori. 
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