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Abstract 
 The elasto-plastic hardening model for austenitic steels undergoing plastic strain induced martensitic 
transformation is presented with application to both monotonic and cyclic loading processes. The kinematic hardening rule is 
assumed and expressed in terms of the back stress Z composed of two portions X and Xt , the first related to plastic strain, 
the other to phase transformation and volume fraction of martensite. The transformation process is assumed to be driven by 
the back stress difference X – Y, where Y is the transformation back stress related to growth of the martensitic phase. The 
non-linear coupling of hardening and phase transformation processes occurs due to interaction of back stresses X and Xt. 
The thermodynamic framework is applied by introducing state variables and conjugate forces used in specifying the plastic 
flow and evolution rules. The model is applied to simulate cyclic hardening response for uniaxial tension-compression tests 
and for combined tension-torsion tests. The cyclic stress-strain curves for specified strain amplitudes are used in material 
parameter calibration. 
 
Keywords: plastic deformation, martensitic transformation, kinematic hardening, back stresses, cyclic deformation, increased 

hardening rates, decreased ratcheting strains. 
 

 

Notations 
 

, t
ij ijX X  back stress associated with plastic deformation and martensitic transformation for 

the yield condition, 

ijY  back stress associated with martensitic transformation for the phase transformation 
condition, 

, ,p t lR R R
 

radius of plastic surface, transformation surface and radius of the limit surface for 
back stress 

ijX ,  

,   martensite volume fraction, conjugate generalized force,

,e p
ij ij   

elastic strain, plastic strain, 

,ij ijs
 

stress, stress deviator, 

,m m  hydrostatic stress component, volumetric strain 

S specific entropy per unit mass, 

,ij ijy
 

microstrains conjugate with ijX , 
ijY , 

( )  , 
specific free energy,  

( )r
ijX

 
recovery potential, 

1 2,    
 

Lagrange multipliers. 
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Figure 1. Stress-assisted and strain induced region as function of temperature (Tamura, 1982; Olson and Cohen, 1982) 

 
1.  Introduction 
 Austenitic steels have wide industrial application in view of their physical and mechanical properties, 
such as corrosion resistance, strength, ductility, weldability, etc. They demonstrate the higher 
strength/elongation ratios as compared to other metallic structural materials used in automotive or aircraft 
industry. The microstructural evolution during plastic deformation is related to the low stacking fault energy and 
strain induced martensitic transformation. This transformation may occur spontaneously in the cooling process 
below temperature sM  and also induced by stress or plastic strain in metastable austenitic steels at temperatures 

higher than  sT M , cf. (Abrassart, 1973; Maxwell et al., 1974; Tamura, 1982; Onyuana, 2003; Talonen, 2007). 

 The martensitic transformation affects essentially mechanical properties of the initial austenitic 
structure. The nucleation and growth of martensitic phase induce higher plastic hardening rate, both for 
monotonic and cyclic loading, increases fatigue resistance, but may reduce corrosion resistance (Narutani, 1989; 
Lebedev and Kosarchuk, 2000; Bracke et al., 2006). Two different martensite phases: paramagnetic hexagonal 
close-packed (HCP)  - martensite and ferromagnetic body-centered cubic (BCC)  - martensite may coexist in 
the austenitic steels. 
 The process of mechanically induced martensitic transformation was analyzed by Olson and Cohen 
(1975, 1982) who assumed two models of nucleation of martensitic plates or needles, namely, stress-assisted 
martensite and strain-induced martensite. In the first case the applied stress of the value below the yield stress 
assists or generates the martensitic transformation at the temperature below or above sMT  .The plastic 
deformation (TRIP) is then caused by the transformation process. In the second case the plastic transformation 
of austenitic matrix induces nucleation and growth of martensite phase. The spontaneous transformation due to 
cooling occurs below the temperature 

sM . Referring to Figure 1 representing stress-assisted and strain-induced 

transformation domains in the T  plane, it is seen that the stress-assisted nucleation occurs below the 
temperature 

sMT   when the applied stress reaches the yield stress value Y .Above the temperature 

sMT   the martensite nucleation occurs due to developed plastic deformation. The temperature  

dMT  specifies the end of the transformation process. Different martensitic structures develop depending on 

the process type cf. (Maxwell et al., 1974; Tamura, 1982; Olson and Azrin, 1982; Das et al., 2008). The 
martensite form assisted or generated by stress below the yield stress value is the same as that generated by the 
cooling process, namely in the plate form. The martensite induced by plastic strain has lathlike form. At the 

temperature near 
sM  both forms of martensite may coexist. For the temperature increasing above 

sM , the 
needle structures appear at the intersection of shear bands. 
 The modeling of kinetics of martensitic transformation induced by plastic strain was presented in 
numerous papers (Olson and Cohen, 1975, 1982; Diani, et al., 1995; Fischer et a.l, 1997; Cherkaoui et al., 1998; 
Tsuchida and Tomota, 2000). It was assumed that two modes of transformation , namely   , or 

  , where the martensite   is an intermediate phase. Olson and Cohen (1975) assumed the mode 
  , but Tjong and Ho (1988) demonstrated that for cyclic deformation the  - martensite also develops. For 

the strain amplitude 003.0a  it constitutes the dominating phase and for the strain amplitude increasing to 

006.0a  the lath structure of  - martensite is generated at the intersection of shear bands, cf. Figure  2. 
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(a)                                                                                                                (b) 

Figure 2. Lathlike martensite structure after rupture of tensile specimen: a) steel 321,  
      b) steel 304 (Fassa et al., 2004; Fassa and Kalete, 2004). 

 
The experimental works related to the strain induced martensite demonstrated that the martensite phase 

affects essentially the stress-strain curve. The characteristic inflexion point appears at which the curve slope 
start to increase in continuing deformation (Perdahcioğlu, et al., 2008; Mughrabi and Christ, 1997). This effect 
is also observed during cyclic loading (Iwamoto, et al., 1998; Kaleta and Ziętek, 1998; Tomita and Iwamoto, 
2001). The effect of strain state that is of tensile and compressive strains on the rate of growth of martensite 
phase was investigated (Lebedev and Kosarchuk, 2000; Hecker, et al., 1982). The results are not conclusive 
(Lebedev and Kosarchuk, 2000; Hecker, et al., 1982). In Hecker, et al. (1982) it was concluded that for small 
strains the rate of growth is higher in the compressive state but for larger strain values the higher growth rate 
occurs in the tensile state. In cyclic deformation the martensite growth occurs in consecutive cycles when the 
strain amplitude exceeds the threshold value (Mughrabi and Christ, 1997; Kaleta and Ziętek, 1998; Ganesh, et 
al., 1994). 

The volume fraction of martensite in the austenite matrix is denoted by  . For the stress assisted 
growth the total strain is decomposed into elastic, transformation and plastic parts. For the strain-induced 

martensite the volume fraction   is related to total or plastic strain. Such relation based on uniaxial tensile or 
compressive tests has been proposed by Angel (1954), next Ludwikson and Berger (1969) in the form

 
               

kn 






ln

1
ln                                         (1) 

where n and k are the material parameters and   is the total or plastic strain. However, the most popular is the 
Olson and Cohen (1975) relation specifying the process kinetics in the form 

                
slipAp   )1(          (2) 

where  

       )1()( 1 sbnsbnA   
,       (3)  

 Here slip is the plastic strain associated with crystalline slip, sb  denotes the slip band density, p  is the 
probability of martensite incubation at the intersection of slip bands, n  and   are the material parameters 
usually depended on the temperature. The generalization of this relation was proposed by Stringfellow et al. 
(1992), namely: 

)~)(1(   BAp slip        (4) 

where ~  is the rate of hydrostatic stress component. The cyclic deformation and martensitic transformation was 
analyzed by Garion i Skoczeń (2002). The evolution relation of   was proposed in the form 

qqqHTA L
p  )))(((),,(         (5) 

Where A is the function of temperature, stress and plastic strain rate, q  denotes the accumulated plastic strain 

and q  is the threshold value of q  characterizing onset of transformation, H is the Heaviside function and L  is 

the martensite saturation value. It was also assumed that the yield stress and the hardening modulus depend on 
the volume fraction  . 

The martensite transformation is an irreversible process and its evolution is specified in terms of 
thermodynamic forces associated with the structural transformation. Alternatively, the transformation condition 
can be expressed in the stress space by introducing the transformation surface similar to the yield surface and 
the associated flow rule, cf. Fischer et al. (1997, 2000). Levitas et al. (1998, 1999) presented thermodynamic 
framework of martensite transformation and specified the dissipation rate. The initiation and growth of 
martensite has been treated in literature at different scales, micro (Fischer, et al., (1997); Cherkaoui, et al., 
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(1998); Tsuchida and Tomota, 2000), mezo (Levitas et al., 1999) and macroscale, usually applying the 
homogenization procedure.  

The present paper is aimed at formulation of the constitutive model of plastic deformation coupled with 
the martensite growth during monotonic and cyclic loading. The plastic deformation is specified by the 
associated flow rule and the yield condition dependent on the stress and the back stress Z which is decomposed 
into the back stress X associated with plastic deformation and the back stress Xt associated with the martensitic 
transformation Z=X+Xt. The constitutive model proposed in the previous paper (Mróz and Ziętek, 2007) is now 
modified by introducing the transformation surface in the back stress space. In Section  2 the constitutive 
equations are presented and in Section 3 the model is applied to simulate uniaxial cyclic deformation curves and 
combined cyclic tension and torsion tests with account for martensite evolution. It is shown that the so called 
“abnornal hardening” rate induced by phase transformation can be well simulated with characteristic shape of 
hysteretic loops. In the combined cyclic tension-torsion tests the accumulated ratcheting strain is essentially 
reduced due to progressing phase transformation. 

 
2. Constitutive model formulation 
 
 The constitutive model is based on the assumption of the kinematic hardening rule with neglect of 
isotropic hardening. This assumption is based on the observation that during cyclic tension-compression tests 
with accompanying phase transformation the elastic domain (defined by a small offset value) does not expand 
and can be assumed as fixed. Two irreversible coupled processes proceed in the material that is plastic 
deformation composed of shear strains on crystallographic slip planes and induced martensitic transformation 
usually initiating at the intersection of shear bands. The yield condition is assumed in the form 

 0))((2
3  pijijijijp RZsZsF ,                     (6) 

where ijZ  is the total back stress which is assumed to be composed of two portions, the first ijX  associated with 

the plastic deformation, the other 
t
ijX  associated with the martensitic transformation, thus 

                  
t
ijijij XXZ  .            (7) 

The phase transformation condition is assumed in the form  
      0),())((2

3  mtijijijijtr RYXYXF         (8) 

and is expressed in terms of the back stress  
ijX  reaching the critical value dependent on the generalized force   

conjugate to the martensite volume fraction   and the hydrostatic stress component kkm  3
1 . The back stress 

ijY  growing during the phase transformation specifies the translation of the surface 0trF  in the back stress 

space. Following the previous paper (Mróz and Ziętek, 2007) it is assumed that 

       ij
n

eij

n

klkl
t
ij YYaYYYaX )()( 2

3   ,     2
1

2
3

klkle YYY         (9) 

where )( a  is the monotonically increasing and bounded function of  , thus 0)0( a  and 
*)( aa   for 

*   where 
*a  and 

*  are the saturation values. The effect of the back stress Y increases with the growth of 

the martensitic phase. For n=2 and  0tR  there is X=Y and the model formulation of the previous paper (Mróz 

and Ziętek, 2007) is obtained. 
The elastic state of material is specified in terms of state parameters and conjugate forces, thus 
 ),( Te

1 εα   ),( SσA1                          (10) 

where ][ e
ijeε  is the elastic strain, T denotes temperature, ][ ijσ  is the stress tensor and S  is the 

specific entropy per unit mass. The inelastic response is expressed in terms of the internal state variables and 
conjugate forces, namely 
 ),,,( yηα2   ( , ) X,Y2A                   (11) 

where ][ ijη  and ][ ijyy  are the microstrains conjugate with the forces X and Y. The specific free energy for 

the isothermal process is assumed in the form 

 )(),(~
23

1
13

1
2
1

21   ijijijij
e
kl

e
ijijkl yyCCLαα                  (12) 

For simplicity, the elastic moduli of austenite and martensite are assumed to be the same , with the elasticity 
matrix Lijkl. The elastic moduli for microstrain energy terms are C1 and C2. 
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The specific dissipation rate follows from the second law of thermodynamics 

 0   ijijD                                 (13) 

Decompose the total strain rate into elastic, plastic and transformation components:
t

ij
p

ij
e

ijij    . In 

view of (13), the forces conjugate to elastic and inelastic state variables are 

 

 .             ,  

,          ,

23
2

13
2














d

d
yC

y
Y

CXL

ij
ij

ij

ij
ij

ij
e
klijkle

ij
ij




















.                        (14) 

And 

  0)(   
ijyijYijijXt

ij
p

ijijD                         (15) 

              The back stress X can be regarded as the local fluctuation (self equilibrated residual stress) induced by 
the inhomogeneous plastic deformation within the crystalline grain. Similarly, Y is the fluctuation stress induced 
by the martensitic transformation. The transformation process is assumed to start when the effective scalar back 
stress reaches a critical value and proceeds with the accompanied growth of the transformation back stress Y. 
The deviatoric component of the transformation strain is neglected, only volumetric strain is specified, thus 

ijm
t

ij  
. 

 The microstrains ij  and yij are the conjugate variables used to specify the free energy terms of (14). 

They represent strain fluctuations in the representative element, not affecting the macro-strain ε, only inducing 
coupled hardening effect. These microstrains do not occur in the finite form of constitutive relations. 
Two major cases now occur, namely, the plastic flow with no phase transformation and the plastic flow coupled 
with martensite evolution. 
 
2.1. Plastic flow 

Now, we have  

 
0  ,0or   0    ,0    ,0  trtrtrpp FFFFF                                 (16) 

and the plastic deformation of the austenite occurs. Assume the associated flow rule 

 
p

ijij
ij

ij

pp
ij R

Xs
N

F

2

)(3
111







 


                   (17) 

and the microstrain rate ij  governed by the yield condition and the recovery potential ( )r r  X , thus 

                                                   ijXijCXr

ijX

r

ijX

pF
ij 2

1   ,1 




















   ,                                   (18) 

and 
 )()( )(

113
2

113
2

13
2

ij
l

ijijijijij XXCCXNCCX    ,                 (19) 

where the plastic multiplier equals p
ij

p
ij  

3
2

1   and X(l) is the back stress on the limit surface 

 3 3
2 2

3
( ) 0

2l ij ij ij ij lF X X X X R
C

    X ,                                (20) 

And 
C

Rl 2

3
  is the radius of the limit surface for the back stress X, cf. (Mróz and Ziętek, 2007). The back stress 

evolution rule follows the Frederick-Armstrong rule used frequently in the cyclic plasticity models (Frederick 
and Armstrong, 2007). The hardening modulus H  is specified from the consistency condition 

 H
F

ij
ij

p
1


 




                   (21) 

and there is  
   ijij

l
ij NXXCH  )(

13
2

.
                   (22) 

When the martensitic transformation occurred in the previous stage with subsequent unloading on 
transformation surface the flow rule has the form 
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Figure 3. The yield and transformation surfaces 0pF , 0trF

  
in the stress space. 
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ijijij

ij
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ij R

XXs
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2

)(3
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
                      (23) 

and  

     0trF  or 0  i  0 



 ij
ij

tr
tr X

X

F
F                    (24) 

The martensitic phase does not grow but the transformation surface as the result of plastic deformation 
translates in accordance with the evolution equation  

    ij

t
klp

kl
ij

p
ij Y

X

Y

F
y








   1
.                    (25) 

 
2.2. Coupled plastic deformation and phase transformation. 
 

The coupled plastic deformation and phase transformation processes occur when  
    0    0,   ,0     ,0  trtrpp FFFF 

 
                                             (26) 

Similarly as in the previous case, the plastic flow rule has the form 

         
1 2 1 2

3( ( ))

2

t
p ij ij ijp tr t

ij
ij ij p ij

F s X XF R

R
    

  
   

   
  

Y                                  (27) 

The deformation strain rate has now the volumetric term specified by the relation  

                            m

t
m

R







 23
1  .                                                (28) 

The radius of the transformation surface should be a decreasing function of the hydrostatic stress m . 

Let us note that both plastic and transformation strain rates are included in one term (27). The evolution rules of 
the microstrains ijy  and ij  are 
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and 
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2
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

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
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
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

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                   (30) 

The multipliers 1  and 2  are expressed from the consistency conditions 

                
ij

ij

pF

H



 





1

1
1 , 

ij
ij

pF

H



 






2
2

1                  (31) 

and the detailed derivation is presented in Appendix. The martensite evolution rule can be derived from the 
transformation condition (8), thus  

  






d

dRF ttr
22                                           (32) 

The relative configuration of yield and transformation surfaces is presented in Figure  3.  
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2.3.Selection of material functions  
 
 The back stress function ( , )t YX  is specified by (9). In this paper it is assumed that n=1 and we have  

  3
2( , ) ( ) ( )t

ij kl kl ij e ijX a Y Y Y a Y Y   Y                                                  (33) 

where  

r
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Y
Y


~

,     
r

e
e

Y
Y




~
                         (34) 

and r  is the reference stress to render klY
~

 and eY
~

 non-dimensional. The free energy function associated with 

transformation, the conjugate force   and the radius of the transformation surface are 
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2
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2
12
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1 )1)(())((   mstmstt bhRbhRR

             
(35)   

where stR  is the saturation value of tR . The stress function )( mh   should be monotonically growing with m , 

so it is assumed in the non-dimensional form 

 mk
mm ehh 

~
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m
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                  (36) 

The martensite evolution rule is obtained from (32) as   
   )1)(~())(~( 22   mm bhbh                    (37) 

and the volumetric transformation strain equals 

         
r

m

mr
m

kh
b

d

dh
b








)~(

)1(~
1

)( 22
26

12
26

1                    (38) 

Integrating relation (37), one obtains 

     





2

0

2)~(

1






dhb m

e .                                 (39) 

The rate of evolution of   now depends on the sign of mean hydrostatic stress, thus predicting different rate in 
tension and compression tests. 
 
3. Model application to simulation of uniaxial and biaxial cyclic deformation 
 
3.1. Cyclic deformation for uniaxial tension – compression loading. 
 

Consider first the uniaxial deformation in cyclic tension – compression loading program. The yield 
condition (6) now has the form 

           

0)(
2

 p
r

p RsignY
Y

aXF


                    (40) 

and the transformation condition is expressed as follows    

         
0),(  ttr RYXF .                                 (41) 

The relation (14) between the state variables and the conjugate forces are 

      
).(            ,        ,  21 


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d

d
yCYCX .                  (42) 

When only the plastic deformation occurs, then 0pF , 0trF , and from (17) it follows that  

        
 pp CXCX  

3
2
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and 

pYaY   )(2 .                                  (44) 
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(a)                                                                                   (b) 

Figure 4. Evolution of the back stresses X and Y during one cycle. 
 

When both plastic deformation and phase transformation takes place, from (14), (29) and (30) the 
following evolution relation results 
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For states close to the saturation of phase transformation, from (45) it follows that  

 
ppt

CXRXa
CC

CC
X  

3
2*

12

21 )21( 



                                     (46) 

where )( ** aa  . 
 

Consider now the process of uniaxial cyclic tension – compression of specified plastic strain amplitude 

ap . For the reloading from the reversal state, the evolution of back  stress X  is obtained by integrating (43), 

thus 
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The transformation surface becomes active when tap RXX 2)(   and from (45) and (47) we obtain 
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The evolution of the back stresses X and Y during one cycle is shown in Figure  4. 
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3.2 Biaxial stress state: combined torsion and tension. 
The shear stress   2112  and longitudinal stress  11  are applied in the case of combined 

tension and torsion. The yield condition (6) has now the form 
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and the transformation condition may be expressed by  
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The relations (14) between the state variables and the conjugate forces are  
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The evolution of shear and axial strains may be obtained by applying the associated flow rule (17) 
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where 
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Similarly as in the uniaxial state, when only plastic deformation occurs ( 0   and   0    ,0  trpp FFF  ), the 

evolution equations for the back stress take the form 
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The evolution of the center of the transformation surface is specified by the relations:  
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The additional terms occur in equations (55) and (56) when the martensitic transformation takes place. The 
evolution rules for transformation of back stress then take the form  
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Taking into account equations (57), the evolution formulae of back stress may be expressed as follows 
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The evolution equation for volume fraction of martensite   is the same as for the uniaxial case. 

 
4. Identification of parameters of hardening model and its application. 
 
4.1 Parameter specification 
 

The identification procedure has been carried out by using the experimental results presented in Kaleta 
and Ziętek (1998) and program package for non-linear approximation SigmaPlot®4.0. This program package fits 
the equations to experimental data using standard curvilinear approximation techniques –least squares 
minimization of the function and generates full statistical report. 



 
 
 
 

International Journal Of Structural Changes In Solids, 3(3), 2011, 21-34 

 
 
 
 

30 

 
Figure 5. The hysteresis loops derived from model and experiment for different plastic strain 

amplitudes in the steady state of the cyclic deformation process. 
 

Cylindrical specimens made of austenitic steel 304L were tested under uniaxial tension-compression. The 
amplitude of plastic strain was controlled during the test. The model parameters were found for the steady state 
of cyclic deformation. It may be assumed that the volume fraction of martensite is close to its asymptotic value 

*   after some number cycles. 

The parameters 1B , 2B , 3B  and 4B  were obtained from the identification procedure based on equations 

(49). This approximation allow us obtain quotient 1 2 1 2( )C C C C  only, so having value of parameter C parameter 

1C  may be found using equation (47) for inactive transformation surface. The following parameter values were 

specified: MPaC  1250001  , MPaC  850002  , 005.0C , 007.0* a  and MPaRst  190 . Three exemplary 

loops are presented in Figure  5. 
Numerical simulation has been performed for two loading programs: under the conditions of increasing and 

constant plastic amplitude. For lack of experimental data connected with the growth of martensite, the values of 
the parameters in the equations (35) – (39) were accepted on the ground literature data (Mahnken, et al., 2009): 
k=0.01, b=0.1.  
 
4.2 Simulation of cyclic hysteresis loops during growth of martensitic phase: uniaxial cyclic loading. 
 

The simulation was performed for uniaxial cyclic tension – compression at constant plastic strain amplitude 
as well as at constant stress amplitude. The values of the parameters 1C , 2C  and C  were accepted from the 

identification of hysteresis loops at the steady state. The function  )(a  was assumed as linear but   and tR  

were specified by the equations (35) and (39). Results of simulation at constant plastic strain amplitude and 
constant stress amplitude are presented in Figures 6 and 7.   
The obtained results are stable as the small changes of parameters do not cause large changes of the values of 
stress or the back stress. It is seen that due to transformation induced hardening the transient cyclic deformation 
proceeds for shrinking stress-strain loops and increasing stress amplitude. 
 
4.3 Cyclic tension – torsion tests of tubular specimens. 
 

The simulation was performed for uniaxial cyclic tension – compression at constant stress amplitude 
under fixed shear stress value. 
The dependence of axial stress and back stress on plastic strain is presented in Figure 8 and the dependence of 
back stress Y  and Y  on plastic is demonstrated in Figure  9. 

The accumulation of shear strain p
12  due to cyclically varying axial strain p

11  is depicted in Figure  10. The 

growth of martensitic phase causes increase of back stress Y  (Figure  9b). For that reason the accumulation of 

shear strain p
12   decreases in consecutive cycles. All parameters: axial strain amplitude p

a11 ,  accumulated  

shear strain p
12  in cyclic deformation , back stress components X , X , Y  and Y  become stabilized with 

convergence of the martensite volume fraction   to its limit value. Unfortunately, the experimental data related 

to ratchetting effect combined with martensitic transformation are not available. 
 
The evolution of yield and transformation surfaces during cyclic loading is illustrated in Figure  11.  
 



 

 
Ziętek and  Mróz / Hardening rule for austenitic steels accounting for martensitic transformation 31 

       
(a)                                                                     (b) 

Figure 6. The evolution of cyclic hysteresis loops for constant plastic strain amplitude: a) back stress - plastic strain, b) stress - plastic strain. 

 
(a)                              ( b) 

Figure 7. The evolution of cyclic hysteresis loops for constant stress amplitude: a) back stress - plastic strain, b) stress - plastic strain. 

 
 

        
(a)                                                                              ( b) 

Figure 8. The evolution of cyclic hysteresis loops for constant axial stress amplitude superposed on fixed shear stress MPa 100 : a) 
axial  stress - longitudinal plastic strain deviator, b) back stress - axial plastic strain deviator. 

       
                   (a)                                                                               ( b) 

 

Figure 9. The evolution of back stress components  
Y  and 

Y  for cyclic constant axial stress amplitude superposed on fixed shear stress 

MPa 100 : a) back stress Y  - axial plastic strain, b) back stress 
Y  - axial plastic strain. 
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Figure 10.  Dependence of the shear strain p
12  on the axial strain 

p
11  for cyclic tension – compression of specified stress 

amplitude superposed on fixed shear stress. It is seen that the ratcheting effect disappears due to transformation hardening. 

 
Figure 11. Schematic presentation of the yield and transformation surfaces in the initial and steady states. 

 

5. Concluding remarks 
The paper presents the formulation of an of elasto-plastic model for austenitic steels with account for 

martensitic transformation induced by plastic deformation. Constitutive equations were formulated using the 
irreversible thermodynamics framework with internal variables. Two irreversible coupled processes proceeding 
in the material were accounted for by considering plastic deformation and induced martensitic transformation 
above the transition temperature Ms. The phase transformation condition is expressed in terms of the back stress 
X reaching its critical value dependent on the generalized force conjugate to volume fraction of martensite and 
the hydrostatic stress. The condition of plastic deformation was assumed in the form of the modified yield 
surface. This modification allows for the description of evolution of enhanced hardening rate observed for such 
type of austenitic steel. 

It was assumed that the radius of transformation surface depends on the mean stress and generalized 
transformation force. This relation generates the volumetric strain component and the martensite fraction. Based 
on experimental data obtained for the steady cyclic deformation, the plastic hardening parameter can be 
specified. The parameter related to martensitic transformation may be determined from microscopic 
experiments. However, the presented model requires macroscopic values. The relations specifying the volume 
fraction of martensite and the respective parameters were fitted by numerical simulations.  
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Appendix 

The multipliers 1  i 2  specifying yield and transformation strain rate can be derived from the 

consistency conditions imposed on yield and transformation conditions, thus 
0pdF dt   and 0trdF dt  ,                    (59) 

and we have there from 
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The multipliers 1  and 2  can be obtained as the solution of the system of two linear equations 
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Solution of the system of equations (62) provides the multipliers 1  and 2 , thus 
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