
 
 
 
 
INTERNATIONAL JOURNAL OF STRUCTURAL CHANGES IN SOLIDS – Mechanics and Applications 
Volume 4, 2012, pp.1-11  
 

 

 
 
 
 
 

A numerical study on effect of strain rate and temperature in the Taylor rod 
impact problem 

 
Sachin S. Gautama, Ravindra K. Saxena*b 

 
 

Abstract 
 Study of impact problems has important applications in the branch of engineering. In impact problems, the primary 
design objective is to ensure that the engineering structures do not fail catastrophically when subjected to short duration 
impact loads. Due to impact, high magnitude of stress waves travel inside the continuum. Material experiences large plastic 
strain and high temperature rise on the impacting face. A three-dimensional, large deformation, thermo-elasto-plastic, 
dynamic, contact, finite element formulation is developed to study the effect of strain rate and temperature on the 
deformation and stress fields in the Taylor rod impact problem. It is found that the equivalent plastic strain gets over-
predicted to a significant extent if the effect of the strain rate is not included in the formulation. 
 
Keywords:  High velocity impact; Thermo-elasto-plastic formulation; Numerical algorithms; Taylor rod impact Test; Finite 
element method. 
 

 
1. Introduction 
 Impact phenomena occur in many engineering situations. The basic characteristics of an impact 
phenomenon are very short duration, high force levels, large plastic deformations and strain rates and rise in 
temperature. Rigorous analysis of an impact problem requires the consideration of all these aspects. When a 
material is plastically deformed, most of the energy is converted into heat. This leads to thermal gradients that 
soften the material differentially creating high local strain rates. This, in turn, induces additional temperature 
rise because of the correlation between strain rates and temperature rise. This thermo-mechanical phenomenon 
becomes more severe in high velocity impacts. 

A commonly employed procedure in analyzing thermo-elasto-plastic problem is to decouple it by 
solving it in two steps in each increment: the dynamic, elasto-plastic deformation analysis at known temperature 
field followed by the transient heat transfer analysis at the fixed configuration [Wrigger and Miehe 1994; Xing 
and Makinouchi 2002]. The constitutive equation for thermo-elasto-plastic behavior differs from that of the 
elasto-plastic behavior in two respects. First, the incremental strain consists of three parts: (i) elastic, (ii) plastic 
and (iii) thermal. Secondly, the plastic potential for thermo-elasto-plastic behavior also depends on the 
temperature and strain rates.  Thus, the corresponding incremental stress-strain relation includes an additional 
term consisting of temperature and strain rate effects besides the usual term containing the fourth-order elasto-
plastic constitutive tensor. Additionally, this tensor gets multiplied by the difference between the total and 
thermal strain. In dynamic thermo-elasto-plastic problems, the incremental temperature is determined by solving 
the unsteady heat conduction equation where the heat source term consists of the incremental plastic work done 
per unit volume. 

In plastic deformation problems, a large fraction of the mechanical work is converted into heat. Mason 
et al. (1993) made the first attempt to measure this fraction using dynamic experiments performed over a wide 
range of strains and strain rates. They demonstrated that the fraction of plastic work getting converted into heat 
depends substantially on the strain and strain rate levels. 

Taylor (1948) determined the dynamic yield stress of one dimensional specimen through the impact of 
cylindrical specimen on a flat rigid target. This problem, generally known as the Taylor rod impact problem or 
test, is used as an experimental and numerical test for determining the mechanical behavior of materials 
subjected to high strain rates. Several authors have studied the Taylor rod impact problem experimentally, 
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theoretically and numerically. Only some latest references which incorporate the dependence of the yield stress 
on the strain rate and temperature are discussed in the present work. Celentano (2002) did a numerical 
simulation of Taylor rod impact test using in-house finite element code. Johnson-Cook model (1985) was used 
to describe the dependence of the yield stress on the strain, strain rate and temperature.  Few experiments were 
also performed to validate the numerical code. Brünig and Driemeier (2007) performed the numerical simulation 
of symmetrical Taylor rod impact test (i.e., the impact of two identical cylindrical rods) using the LS-DYNA 
Explicit finite element code. They proposed a functional for determining the dependence of strain, strain rate 
and temperature. The constants were determined from experimental work available in literature. Teng et al. 
(2005) investigated the fracture phenomena and mechanisms in Taylor rod impact test using explicit ABAQUS 
finite element code. They employed a recently developed ductile fracture locus with the cut-off value for the 
negative stress triaxiality (ratio of hydrostatic stress and equivalent stress) as ‘(-1/3)’. Johnson-Cook model 
(1985) was used to describe the dependence of the yield stress on the strain, strain rate and temperature. Even 
though all these researchers have accounted for the dependence of the yield stress on the strain rate and 
temperature, the effects of these two parameters (i.e., the strain rate and temperature) on the deformation and 
stress fields have not been explicitly investigated.  

It is observed from the literature that the dependence of the yield stress on the strain rate and 
temperature on the deformation and stress fields have not been explicitly investigated. The objective of the 
present work is to bring out the effect of strain rate and temperature on the deformation behavior and stress 
distribution in high velocity impact problems. Specifically, the effect of these quantities is studied on two 
continuum parameters which influence the fracture (Saxena and Dixit 2011), the equivalent plastic strain and 
triaxiality. 

A three dimensional, large deformation, thermo-elasto-plastic, dynamic, contact, finite element- finite 
difference formulation is developed for this purpose.  Elastic behaviour is modeled by the generalized Hooke’s 
law and the plastic behavior is modeled by an associated flow rule based on the von-Mises yield function. The 
variable yield stress is assumed to depend on equivalent plastic strain, equivalent plastic strain rate and 
temperature by Johnson-Cook model (1985). Incremental logarithmic strain measure is used.  The incremental 
stress is made objective by evaluating it in a frame rotating with the material particle.  The radial backward 
return algorithm is used to correct the updated stress iteratively so that it lies on the yield surface. Updated 
Lagrangian formulation (Bathe 1996) is used to develop the incremental finite element equations. A finite 
difference scheme is used for carrying out the discretization in time. Newmark’s algorithm, which is found to be 
suitable in terms of stability and accuracy among the various finite difference schemes, is used for this purpose. 
Modified Newton-Raphson iterative method is used for solving these nonlinear incremental equations. Contact 
iterations are carried out to find the contact reactions (Zhong 1993) in each of the Newton-Raphson iteration. 
The incremental analysis is decoupled by performing it in two steps. In the first step, the dynamic thermo-elasto-
plastic analysis is carried out at a known temperature. In the second step, the transient heat transfer analysis is 
carried out at fixed configuration by using the incremental plastic work per unit volume as the heat source. The 
Galerkin's finite element method and a finite difference scheme are used to convert the unsteady non-linear heat 
conduction equation into a set of algebraic equations. 

 
2. Dynamic Thermo-Elasto-Plastic Formulation 

 
2.1  Incremental strain-displacement relation 

The incremental logarithmic strain measure, used in the present formulation, is defined by (Bathe 
1996) 

ln( )L t

t ij i ijd          (no sum over i)           (1) 

where ij is the Kronecker's delta and t

i  are the principal values of the incremental right stretch tensor t

ijU . 

2.2 Thermo-elasto-plastic constitutive equation 
During the plastic deformation, the plastic work is transformed into heat. This phenomenon raises the 

temperature of the body. This temperature rise induces a thermal strain inside the body. The incremental 
logarithmic strain L

t ijd  can therefore be considered as the sum of three parts: the incremental elastic 

strain eL

t ijd , the incremental plastic strain pL

t ijd  and the incremental thermal strain TL

t ijd : 
L eL pL TL

t ij t ij t ij t ijd d d d                  (2) 

Then, the incremental elastic stress-strain relationship can be expressed as follows: 
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i jkl = C (   -  -  )E L pL TL

t ij t kl t kl t kld d d d   
              

(3) 

Here, t ijd
 
is the incremental stress tensor and i jklC 2E

ij kl ik jl    
 
is the elastic constitutive tensor where 

  and   are the Lame's constants. 

It is assumed that the strain rate tensor (i.e., the symmetric part of the velocity gradient tensor), denoted 
by t L

ij  can be additively decomposed into the elastic and plastic parts. Thus 
t L t eL t pL

ij ij ij     
             

(4)          

where t eL

ij and t pL

ij are the elastic and plastic parts respectively of t L

ij . Equivalent plastic strain rate (an 

invariant of t pL

ij ) is defined as 

2
 =   

3
t pL t pL t pL

eq ij ij              (5) 

The relation between t pL

eq  
and t pL

eq , for small increment, is given by 

2
 = ,  =   

3
t pL t pL pL pL pL pL

eq eq t eq t eq t ij t ijdt d d d                     (6) 

where dt  is the incremental time. 
For a material yielding according to the von-Mises criterion with isotropic hardening (due to strain and strain 
rate) and isotropic temperature softening, the yield function is given by (Bathe 1996) 

 ( ) ( ) , , ,t t t t pL t pL

ij eq ij Y eq eqf T               (7)                           

where t

Y is the variable yield stress of the material. The equivalent stress t

eq  is defined as 

' '3
 =   

2
t t t

eq ij ij            (8) 

Here, 't

ij  is the deviatoric part of t

ij . The dependence of t

Y  on t pL

eq , t pL

eq  and t T is governed by the 

Johnson-Cook model (1985): 

 

 

, ,

1 1 ln

t t pL t pL

Y eq eq

pm
t t pL

n ref eqp pL t pL p

ref eq t pL

m ref ref

H T

T T
A B

T T

  


 





                        







     (9) 

where pA , n , pm  and pB  are the Johnson-Cook parameters, pL

ref
 
and pL

ref  are the reference strain and strain rate 

and mT  and refT  are the melting point and reference temperatures  respectively. 

The incremental plastic strain pL

t ij  
is obtained by the associated flow rule: 

t
pL

t ij

ij

f
d d 







         (10) 

where d  is a positive scalar. From Eqs. (6) and (8) one can get pL

t eqd d  . Setting the total differential of the 

yield function to zero: 

0
t t t t

pL pL

t t ij t eq t t eqt pL t t pL

ij eq eq

f f f f
df d d dT d

T
  

  
   

    
   




   (11) 

 
This is called the consistency condition. Substituting Eqs. (3) and (10), identifying pL

t eqd  as d , t t pL

Y eq    

as 't H  in the above equation and solving for d  gives (Hsu 1986) 

i jkl

'

C (  -  )

C

t t t
t EP L TL pL

t kl t kl t t eqt t pL

ij eq

t t
t E t

rsuvt t

rs uv

f f f
d d dT d

T
d

f f
H

  
 



 

   
      

  
   




   (12) 
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Substituting the associated flow rule (Eq. 10) and the above expression for d  (Eq. 12), the incremental stress-
strain relationship (Eq. 3) becomes 

i jklC (  -  )+ Rt EP L TL t

t ij t kl t kl ijd d d          (13) 

where Rt

ij and the fourth order elasto-plastic constitutive tensor i jklCt EP   are given by (Hsu 1986) 

i jmn pqkl

i jkl i jkl

'

i jkl t t

'

C C

C C

C

C

R

C

t t
E E

t t

mn pqt EP E

t t
E t

rsuvt t

rs uv

t tt
E pL tY Y

t eqt pL

kl eqt

ij t t
t E t

rsuvt t

rs uv

f f

f f
H

f
d dT

T

f f
H

 

 

 
 

 

  
             
   

                 




    (14) 

The incremental stress t ijd  on the left side of Eq. (13) must be an objective stress tensor, i.e., a tensor invariant 

under the incremental rotation. To make it objective, it is evaluated in the material frame and t ijd  is updated 

taking into account the material rotation (Varadhan 1997). 

2.3 Integral form of equilibrium equation 
Integral form of the equilibrium equation at time t t   is given by the virtual work expression (Bathe 

1996)  

   t t t t t t t t t t t t
t t t ti t i ij t ijV Vu du d V d d V F         
        (15) 

where, t t  is the density of the material, t t

iu   is the acceleration vector, t idu  is virtual incremental 

displacement vector, t t

ij  is Cauchy stress tensor, t ijd  is virtual incremental linear strain tensor, t t F  is the 

virtual work of the specified traction, contact traction and body force and t tV is the volume of the continuum. 
Since, the configuration at time t t   is unknown, this expression is transformed to an integral over the known 

domain at time t  (i.e. tV ) involving the second Piola-Kirchoff stress tensor t t

t ijP  and the virtual incremental 

Green Lagrange strain tensor  t ijde  (Bathe 1996). This virtual work expression is further simplified by 

decomposing t t

t ijP  as the sum of t

ij  and t ijdP . Decomposing  t ijde  into the linear and non-linear parts, 

assuming t ijdP  and t kld  (i.e., the incremental linear strain tensor) satisfy the constitutive relationship (Eq. 13) 

and neglecting the higher order terms, Eq. (15) can be written as: 

     t

i jklC (  -  ) Rt t t t t EP T t t
t t ti t i t kl t kl t ij ij t ijV V Vu du d V d d d d V d d V             

               t t tR t t t t t
t t tij t ij ij t ij ij t ijV V Vd d V d d V d d V F                  (16) 

where the linear and nonlinear parts of the incremental Green-Lagrange strain tensor t ijde  are given by 

 , ,

2
t i j t j i

t ij

du du
d


 ,   , ,

2
t k i k j

t ij

du du
d  .      (17) 

3. Finite Element-Finite Difference Formulation 
The domain is discretized into a number of eight-noded hexahedral elements and the incremental 

displacement field is approximated over each element by trilinear shape functions (Bathe 1996). Using the finite 
element approximation, Eq. (16) is converted into a system of second order ordinary differential equations 
(Bathe 1996) 

               t t t tt t t t t T M

t
M U K U f F F F

 
          (18)  
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where  t
M  is the global mass matrix,  t

K  is the global stiffness matrix,  t
f  is the global internal force 

vector,  t t
F


 is the global external force vector at t t  ,  t TF  is the global external force vector due to 

thermal strain and  t MF  is the global external force vector due to the change in plastic properties. Further, 

 
t

U  is the global incremental displacement vector and  t t

U
   is the global acceleration vector at t t  . 

To convert Eq. (18) into a system of algebraic equations, the Newmark's implicit finite difference 
scheme (Bathe 1996) is used. After some algebraic manipulations, Eq. (18) reduces to 

     t

d dt t
K U F          (19) 

where the effective stiffness matrix  t

dK  and the effective incremental force  vector  dt
F  are given by 

     0

t t t

dK a M K           (20) 

                1 2

t t t ttt t t T M

dt
F F f M a U a U F F


             (21) 

where 0a , 1a  and 2a  are the Newmark's parameters (Bathe 1996) and  t

U  is the global velocity vector.  

The solution of Eq. (19) represents only an approximate solution to the governing equations, because of 
the linearization and approximation involved in arriving at expression (16). To minimize the error of the 
approximating solution, the modified Newton-Raphson algorithm (Bathe 1996) is used. The stresses are 
integrated using the radial backward return algorithm (Bathe 1996). The relationship is modified to include the 
effect of temperature and strain rate to ensure that the updated state of stress lies on the yield surface. 

4. Thermal Formulation 

4.1. Governing equation 
For an isotropic material, three dimensional heat transfer equation in Cartesian coordinates can be 

expressed as 

 , ,
0t t t

i i
k T q c T          (22)  

where k is the material conductivity, c is the material specific heat and q  is the rate of heat generation. It is 

assumed that the conductivity k, density ρ and specific heat c do not depend on temperature. 

4.2. Heat generation due to plastic work 
Heat generation per unit volume per unit time at a point in the body due to the plastic deformation 

within time interval ∆t is given by 

t tt pL

p t ij t ijtq d d
t

   


                   (23)                 

where   is the fraction of plastic work converted to heat. The value of   is found to depend on the strain 

levels [Taylor and Quinney 1934; Kamlah and Haupt 1997; Hodowany et al. 2000; Mollica et al. 2001]. This 
fraction increases at the initial levels of plastic deformation and then decreases. Kamlah and Haupt [1997] have 
pointed out that for "pragmatic view point" the constant value of   is acceptable as a compromise between 

simplicity and sophistication for engineering applications. The value of   lies in the range of 0.85 0.95   

[Farren and Taylor 1925; Gao and Wagoner 1987]. The value of   is taken as 0.9 in the present work. 

5. Finite Element-Finite Difference Formulation  
The temperature field over the eight-noded hexahedral element is approximated by the tri-linear shape 

functions (Bathe 1996). Using the finite element approximation, Eq. (22) is converted into a system of first 
order ordinary differential equations (Bathe 1996).  

         
t t t

C T K T Q                     (24) 

where  t
T  is the global temperature vector,  t

T is the derivative of  t
T with respect to time t,  C  is the 

global specific heat matrix,  K  is the global conductivity matrix and  Q  is the global heat flux vector. Using 

the direct integration method, the system of first order ordinary differential equations is converted into a system 
of algebraic equations as 
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     t t t t

t
A T B

 
       (25)               

where, 

      A C t K          (26) 

                1 1
t t t t t t

t
B C t K T t Q t Q              (27) 

Here,   is the parameter of the finite difference scheme (Bathe 1996).  Equation (25), which is a set of linear 
algebraic equations, is solved by the Gauss elimination method. 

6. Contact Formulation 
The dynamic, large deformation, thermo-elasto-plastic, updated Lagrangian finite element formulation 

is used for contact analysis with appropriate modifications. The equations, which consist of the kinematic 
constraints (impenetrability conditions) and the contact force expressions based on the discretization of the 
contact boundary, are developed using the Lagrange multiplier method (Zhong 1993). According to the above 
formulation it is convenient to choose one contact surface as slave (hitting) and the other as master (target) 
surface. A node-to-surface contact model is employed for contact analysis in large deformation problem (Zhong 
1993).  

7. Results and Discussion 
An in-house three-dimensional, finite element - finite difference code is developed based on the 

formulation of Sections 2-6. First, the code is validated by comparing the predicted deformation and temperature 
in Taylor rod impact problem with experimental and numerical results of Celentano (2002). Next, the effects of 
strain rate and temperature on equivalent plastic strain and triaxiality in Taylor rod impact problem are studied. 
    

                          Table 1: Material properties of SAE 1020 steel (Celentano 2002) 
Young modulus E 210 GPa 

Poisson ratio  0.3 

Density ρ 7800 kg/m3 

Initial yield stress  o
Y  333 MPa 

Hardening coefficient  pA  731.7 MPa 

Reference strain  PL

ref  0.01475 

Hardening exponent  n 0.1867 

Thermal exponent  pm  1.0 

Melting temperature mT  01525 C  

Rate hardening coefficient pB  0.05 

Reference strain rate  PL

ref  1.0 

Thermal conductivity  k 52 0W m C  

Specific heat c 450 0J Kg C  

Coefficient of thermal expansion α 5 0 110 C   

 
7.1. Validation 

A coupled thermo-mechanical simulation of Taylor rod impact problem is carried out by considering 
the impact of a flat-ended cylindrical rod against a rigid wall. The geometric details of the problem are shown in 
Fig. 1. The rod material is SAE 1020 steel. The material properties are given in Table 1 (Celentano 2002).  The 
heat transfer to the surrounding environment during a short impact span is assumed negligible, thereby adiabatic 
conditions are considered at the rod boundaries. The reference temperature of the rod is taken as 25 0C . Due to 
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symmetry, only one fourth of the rod is considered for analysis. The finite element mesh consists of 3000 
elements and 3731 nodes. The incremental time step is selected as 0.05 µs. 

 
Figure 1: A flat ended cylindrical rod impacting against a rigid surface 

 

 
(a) Ratio 0fL L  

                     
           (b) Ratio 0fR R                 (c) Equivalent plastic strain on impact face 

                            
                       (d) Equivalent plastic strain on central axis                                                        (e) Temperature on rod axis 

Figure 2: Variation of computed characteristic parameters with time. 
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Figure 3: Deformed configuration.                     Figure 4: Effect of strain rate and temperature on equivalent  

       plastic strain at the center of the impact face. 
 

                                    
                          Figure 5: Effect of strain rate and temperature on equivalent         Figure 6: Variation in axial-displacement for   
                             plastic strain at the outer edge of the impact face.                   the centre point on impact face with time. 

The final length of the rod is denoted by fL  and the final radius of the impact face by fR . Variations of 

0fL L  and 0fR R   ratios with the impact velocity are presented in Figs. 2(a) - 2(b). The respective results 

from the reference are also presented. It is observed that the trends are in good agreement with experimental and 
numerical results of the Celentano (2002). The growths of equivalent plastic strain along the impact face at three 
points and along the central axis at few points at an impact velocity of 183 m/s is shown in Figs. 2(c) -2(d). 
These results are in good agreement with the numerical results of Celentano (2002).  Further, the temperature 
rise at three points along the central axis for impact velocity of 183 m/s is shown in Fig. 2(e).  These results are 
also in good agreement with the numerical results of Celentano (2002). Small deviation in the two sets of results 
is due to the selection of certain values for the Newmark's parameters used in the present formulation and the 
choice of factor   (i.e., the fraction of the plastic work getting converted into heat). This can be explained as 

follows: 
1. In Celentano’s work (2002), the integration of the terms containing the time derivatives of 

displacement (Eq. 18) is carried out with the Hilber-Hughes-Taylor (1977) method and the terms 
containing the time derivative of temperature (Eq. 24) is carried out using the generalized midpoint rule 
algorithm. In the present work, the integration of the terms containing the time derivatives of 
displacement (Eq. 15) is carried out using the Newmark’s scheme (Bathe 1996). The integration of the 
terms containing the time derivative of temperature (Eq. 24) is carried out using the general finite 
difference scheme. 

2. In Celentano’s work (2002), the value of   is not mentioned. In the experimental work of Farren and 

Taylor (1925), the fraction of plastic work getting converted into heat is experimentally measured. For 
Steel, the fraction is 86.5%. In the numerical simulation of fracture in Taylor rod impact test by Teng et 
al. (2005), it is mentioned that this fraction is usually taken as 90%. Hence, in the present work,   is 

selected as 0.9. 
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     Figure 7: Effect of strain rate and temperature on       Figure 8: Effect of strain rate and temperature on  
     triaxiality at the centre of the impact face        triaxiality at the outer edge of the impact face 

 

7.2. Effect of strain rate and temperature 
Equivalent plastic strain and triaxiality are the continuum parameters which influence the fracture in 

ductile materials (Saxena and Dixit 2011).  Next, the FEM code is employed for carrying out the study of the 
effects of strain rate and temperature on equivalent plastic strain and triaxiality in Taylor rod impact problem. 
The un-deformed geometry of the problem domain is shown in Fig. 1. The material properties for SAE 1020 
steel are given in Table 1. The rod is impacted on a rigid wall at an impact velocity of 183 m/s. The deformed 
configuration of the Taylor rod is shown in Fig. 3. 

Figures 4–5 show the growth of equivalent plastic strain at the center and at the edge of the impact 
face. The value of equivalent plastic strain increases at a very high rate and becomes constant within 12-15 µs. 
Further, it is observed that in all the cases the value of equivalent plastic strain becomes constant on the axis of 
the rod for a short duration at around 3-5 µs (Fig. 4).  This is due to the fact that the material at the rod axis is 
not in contact with the rigid surface for this short duration of time (Fig. 6) resulting in unloading and the 
material becomes elastic. After a very short duration the material again comes into contact with the surface of 
the wall. Therefore, it starts deforming again and becomes plastic as is evident from Fig. 4. This phenomenon is 
not observed at the edge of the rod (Fig. 5) hence there is no unloading at the outer edge throughout the 
deformation.  Figures 4-5 show that, initially the edge of the impact face has a higher value of equivalent plastic 
strain in comparison to the center point.  This is because the outer surface of the rod at the impacted end moves 
at a very high velocity and initial plastic deformation is observed at the outer edge. Later, the plastic 
deformation advances towards the central axis of the rod material and its value becomes maximum at the centre.  
 

It is observed from Figs. 4-5 that the value of equivalent plastic strain t pL

eq  is the largest if only the 

effect of temperature is considered as compared to the other cases. This is due to temperature softening of the 
material resulting into an increase in the plastic deformation. It is observed that the value of t pL

eq  is smallest, if 

the effect of strain rate is considered, neglecting the effect of temperature. The value of t pL

eq  with strain rate is 

smallest due to the hardening of rod material. Further, it is observed that the value of t pL

eq increases by about 8% 

when the effect of temperature is considered in comparison to without strain rate and temperature. The value of 
t pL

eq  decreases by about 35% due to strain rate effect only, in comparison to without rate and temperature. Thus, 

the strain rate has a much larger effect on the growth of equivalent plastic strain than the temperature. It is 
observed from Figs. 4-5 that the value of fracture strain gets over-predicted if the strain rate effect is not 
included. 

Figures 7-8 show the variation of triaxiality with time at the impact face. At the center, the triaxiality 
value fluctuates in the initial period for all the cases. The magnitude of triaxiality is observed to be small when 
the effects of strain rate or temperature and strain rate are included in comparison to without strain rate and 
temperature. Further it is observed that the magnitude and variation of triaxiality are not affected much if the 
effect of temperature is included excluding the effect of strain rate. Teng et al. (2005) observed that at high 
velocity the fracture initiates at the center of the impact face in ductile material. At the centre of the impact face 
the magnitude of triaxiality is small (Fig. 7) and the magnitude of equivalent plastic strain is large (Fig. 4). The 
fracture due to high velocity impact in ductile materials is dependent on equivalent plastic strain and 
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temperature (Lemaitre and Desmorat 2005), therefore, the fracture is likely to initiate at the centre of the impact 
face due to larger value of t pL

eq . This phenomenon is called as confined fracture (Teng et al. 2005). 

8. Conclusions 
A coupled thermo-elasto-plastic formulation is developed. The formulation is employed for the 

numerical study of the effects of strain rate and temperature on the equivalent plastic strain and triaxiality in the 
Taylor rod impact problem. The growth of equivalent plastic strain and temperature along the impact face and 
along the central axis of the rod are consistent with the results reported in literature. It is found that the strain 
rate has a larger effect on the growth of equivalent plastic strain and triaxiality than the temperature. The 
fracture strain is over-predicted if the strain rate effect is not included in the analysis. It is found that the strain 
rate has a prominent effect than the temperature on ensuing fracture in high velocity impacts. The presented 
work has been extended to impact fracture of Taylor rod and cylindrical tubes [Gautam and Dixit 2011a; 
2011b]. 

References 
Bathe, K. J., 1996, Finite element procedures. Prentice Hall of India, New Delhi. 
Brünig, M. and Driemeier, L., 2007, Numerical simulation of the Taylor impact test. Int. J. Plast, vol. 23, pp. 

1979–2003. (http://www.sciencedirect.com/science/article/pii/S0749641907000137) 
Celentano, D. J., 2002, Thermo-mechanical analysis of the Taylor impact test.  J. App. Phy., vol. 91, pp. 3675–

3686. (http://jap.aip.org/resource/1/japiau/v91/i6/p3675_s1?isAuthorized=no) 
Farren W. S. and Taylor T. I., 1925, The heat developed during plastic extension of metal. Proc. R. Soc. London 

A, vol. 107(743), pp. 422–451. 
Gao, Y. and Wagoner, R. H., 1987, A simplified model of heat generation effects during the uniaxial tensile test. 

Metall. Trans. A, vol. 18A, pp. 1001–1009. (http://adsabs.harvard.edu/abs/1991MTA....22.1001G) 
Gautam, S. S. and Dixit, P. M., 2011a, Ductile fracture simulation in the Taylor rod impact test using continuum 

damage mechanics, Int. J. Damage Mech., vol. 20, pp. 347-369. 
http://ijd.sagepub.com/content/early/2010/02/08/1056789509357119?patientinform-
links=yes&legid=spijd;1056789509357119v1) 

Gautam, S. S. and Dixit, P. M., 2011b, Numerical simulation of ductile fracture in cylindrical tube impacted 
against a rigid surface, Int. J. Damage Mech., doi: 10.1177/1056789511398883. 

(http://ijd.sagepub.com/content/early/2011/04/22/1056789511398883.abstract) 
Hilber, H. M., Hughes, T. J. R., and Taylor, R. L., 1977, Improved numerical dissipation for time integration 

algorithms in structural dynamics, Earthquake Eng. Struct. Dyn., 5, pp. 283–292. 
(http://onlinelibrary.wiley.com/doi/10.1002/eqe.4290050306) 

Hodowany J., Ravichandran G., Rosakis A. J. and Rosakis P., 2000, Partition of plastic work into heat and 
stored energy in metals, Exp. Mechanics, vol. 40(2), pp. 113-123. 

Hsu, T. R., 1986, The finite element methods in thermo-mechanics, Allen & Unwin, London. 
Johnson, G. R. and Cook, W. H., 1985, Fracture characteristics of three metals subjected to various strains, 

strain rates and temperatures and pressures. Engg. Fract. Mech., vol. 1(1), pp. 31–48. 
(http://www.sciencedirect.com/science/article/pii/0013794485900529) 

Kamlah M. and Haupt P., 1997, On the macroscopic description of stored energy and self heating during plastic 
deformation, Int. J. Plast., vol. 13(10), pp. 893-911. 

(http://www.sciencedirect.com/science/article/pii/S0749641997000636) 
Lemaitre, J. and Desmorat, R., 2005, Engineering damage mechanics, Springer-Verlag, Berlin, Heidelberg. 
Mason, J. J., Rosakis, A. J., and Ravichandran, G., 1993, On the strain and strain-rate dependence of the fraction 

of plastic work converted into heat: an experimental study using high-speed infrared detectors and the 
Kolsky bar. Mech. Mater., vol. 17, pp. 135–145. 

Mollica F., Rajagopal K. R. and Srinivasa A. R., 2001, The inelastic behavior of metals subject to loading 
reversal, Int. J. Plast., vol. 17, pp. 1119-1146. 
(http://www.sciencedirect.com/science/article/pii/S0749641900000826) 

Saxena, R. K. and Dixit, P. M., 2011, Numerical analysis of damage for prediction of fracture initiation in deep 
drawing, Finite Elem in Anal Design, vol. 47(9), pp 1104-1117. 
(http://www.sciencedirect.com/science/article/pii/S0168874X11000850) 

Taylor G.I and Quinney H., 1934, The latent energy remaining in a metal after cold working, Proc. R. Soc. 
Lond. A, vol.143, pp 307-326. 
(http://rspa.royalsocietypublishing.org/content/143/849/307) 



 

 
 

Gautam and Saxena / Effect of strain rate and temperature in the Taylor impact problem 11 

Teng, X., Wierzbicki, T., Hiermaier, S., and Rohr, I., 2005, Numerical prediction of fracture in the Taylor test. 
Int. J. Solids Struct., vol. 42, pp. 2929–2948. 
(http://www.sciencedirect.com/science/article/pii/S0020768304005414) 

Taylor, G., 1948, The use of flat-ended projectiles for determining dynamic yield stress, theoretical 
considerations. Proc. Roy. Soc. London A, vol. 94, pp. 289–299. 
(http://rspa.royalsocietypublishing.org/content/194/1038/289) 

Varadhan, S. N., 1997, Dynamic large deformation elasto-plastic analysis of continua. Master’s thesis, 
Department of Mechanical Engineering, IIT Kanpur. 

Wriggers, P. and Miehe, C., 1994, Contact constraints within coupled thermo-mechanical analysis – A finite 
element model. Comput. Methods Appl. Mech. Engg., vol. 113, pp. 301–319. 
(http://www.sciencedirect.com/science/article/pii/0045782594900515) 

Xing, H. L. and Makinouchi, A., 2002, FE modeling of thermo-elasto-plastic finite deformation and its 
application in sheet warm forming. Engg. Comput., vol. 19, pp. 392–410. 
(http://www.emeraldinsight.com/journals.htm?articleid=1455476) 

Zhong, Z. H., 1993, Finite element procedures for contact-impact problems. Oxford University Press, Oxford. 


